
3URGXFW�'RFXPHQW�
0DQDJHPHQW�ZLWK�6*0/�DQG�

5HODWLRQDO�'DWDEDVHV

Heikki Toivonen

Master of Science Thesis

20.4.2000

University of Jyväskylä
Department of Mathematical Information Technology

i

7LLYLVWHOPl
Tietokannat ja rakenteiset dokumentit perustuvat niin erilaiseen
teknologiaan ja ajatteluun, että niiden yhteiskäyttö voi olla ongel-
mallista. Edistystä on kuitenkin tapahtunut. Tämä tutkielma käsit-
telee näiden kahden teknologian eroja sekä vaikeuksia
teknologioiden yhteiskäytössä. Pääpaino on tuotedokumentaation
hallinnassa. Käytännön osuudessa esitellään eräs sovellus, jossa
tietokannat ja rakenteiset dokumentit tukevat toisiaan.

Tekijä: Heikki Toivonen

Yhteystiedot: sähköposti hjtoi@jyu.fi

Työn nimi: Tuotedokumentaation hallinta SGML:n ja relaatiotieto-
kantojen avulla

Avainsanat: SGML, XML, HyTime, rakenteiset dokumentit, doku-
menttien hallinta, tuotetiedon hallinta, tietokannat

ii

$EVWUDFW
Databases and structured documents have been used apart from
each other. The situation has changed dramatically over the past
few years. This thesis discusses differencies and difficulties in mak-
ing the two separate realms interact. The emphasis is on product
document management. The practical part of the thesis shows one
implementation where databases and structured documents work
together.

Author: Heikki Toivonen

Contact: Email hjtoi@jyu.fi

Title: Product Document Management with SGML and Relational
Databases

Keywords: SGML, XML, HyTime, structured documents, docu-
ment management, product data management, databases

iii

$FNQRZOHGJHPHQWV
This thesis was years in the making. Partly the reason was that I got tired of writing it, but also
because my job was taking too much time. In a way that was a good thing, because it enabled me
to gain more experience and make this a better paper. It was also interesting to see new standards
and programs emerging. I was also able to look back with a better hindsight of what should have
been done differently, and I assume I took a more critical view of my own work.

I would like to thank the various persons who have inspired me on my way of learning SGML and
helped either directly or indirectly with this thesis: the authors of Mosaic, for introducing me to
structured document principles with the birth of the World Wide Web; Professor Heather Brown
from the University of Kent at Canterbury for teaching me SGML and supervising my first
SGML project during my time at Kent University; Ralf Petell and Björn Peltonen for offering me
work at CiTEC Engineering Oy; Joakim Östman for project management; Leonard Norrgård for
help with programming; Kaisa Miettinen for getting gears rolling when they got stuck; Michael
Leventhal for language checking and other comments; Carl-Johann Måsala of Wärtsilä for check-
ing Wärtsilä facts; Jukka-Pekka Santanen and Pasi Koikkalainen, my thesis supervisors at the
University of Jyväskylä, and all the rest of the supercool SGML gang at CiTEC for the enjoyable
and interesting times. Many people have written great books and other publications, their names
can be found in References. I must still point out that all errors are mine.

The people at the 4th International HyTime Conference held in Montreal, Canada, deserve a spe-
cial mention. That was the first SGML/HyTime meeting I attended, and the presentations and
conversations proved to be very inspiring and helpful to me. The atmosphere was enthusiastic and
friendly, even towards a newcomer like me. And to actually meet and speak with creators of
SGML and HyTime was more than I could have ever dreamed of — talk about motivation!

Last but not least I would like to thank my wife Virpi for her understanding and patience.

Vaasa

Heikki Toivonen

iv

7DEOH�RI�&RQWHQWV
7HUPV�$QG�$FURQ\PV� ���
��,QWURGXFWLRQ��
��3URGXFW�'DWD�0DQDJHPHQW� ��

2.1 What Is Product Data Management? ...9
2.2 There Is No Product without Documentation ..10
2.3 Economic Issues ...13

��6WUXFWXUHG�'RFXPHQWV��
3.1 Ways to Indicate Structure ...15
3.2 Languages And Parsers ..17
3.3 Standard Generalized Markup Language ...18

3.3.1 A Brief History of SGML ..18
3.3.2 Structure Is Not Layout ..18
3.3.3 SGML in a Nutshell ...19
3.3.4 DTD And Document Instance ..20
3.3.5 External Entities — A Simple Way to Reuse And Manage Text Fragments23
3.3.6 Users of SGML ..24

3.4 Extensible Markup Language ..25
3.5 HyTime ..26

3.5.1 Hypermedia Concepts and Dimensions ...27
3.5.2 HyTime Hyperdocuments ..27
3.5.3 HyTime Markup ...28
3.5.4 Architectural Forms ..29

3.6 Related Standards ...30
��'DWDEDVHV� ��

4.1 Common Database Properties ..31
4.2 Relational Database Model ..32

4.2.1 Basic Building Blocks ..33
4.2.2 Normalization ...34
4.2.3 Queries And Beyond ..35

4.3 Other Database Models ..36
4.3.1 Object Oriented Databases ...36
4.3.2 More Exotic Database Models ...37

��0DQDJLQJ�'RFXPHQWV�ZLWK�'DWDEDVHV� ���
5.1 Differences And Similarities Between Databases And Structured Documents40

5.1.1 Storing And Retrieving Complete SGML Documents — A Challenge to Databases 40
5.1.2 Extracting Parts of Documents from Databases ...41

5.2 General Purpose Databases ..42
5.3 Specialized Databases ..43
5.4 Writing Modular Documents ...45
5.5 Addressing External Resources ...46
5.6 Client-Server Architecture ...47
5.7 Background Summary ..48

v

��3URGXFW�,QIRUPDWLRQ�0DQDJHPHQW�3URMHFW�DW�:lUWVLOl�16'�3RZHU�3ODQWV� ������������������������
6.1 Analysis Pointed to SGML And Relational Databases ..50
6.2 Requirements And Specification ...51
6.3 Design and Architectrure ..52

6.3.1 Architectural Design ..52
6.3.2 DTD Design ...53
6.3.3 Database Design ...55

6.4 Verification and Validation ..58
��'RFXPHQW�$XWKRULQJ� ���

7.1 Authoring Tool ...60
7.2 Implementation of the WNS Authoring Tool ..63

��'RFXPHQW�$VVHPEO\� ��
8.1 Multidoc Pro SGML Tools ..66
8.2 Multidoc Pro Database Browser and Publisher ...68

8.2.1 Database Mapping ..69
8.2.2 Document Generation ..73
8.2.3 Publishing ...75

8.3 Multidoc Pro Implementation Details ..76
8.3.1 Synex ViewPort Engine ...77
8.3.2 Other Third-Party Modules ..79
8.3.3 Database Support via Open DataBase Connectivity ..80
8.3.4 Main Functionality Classes ..81
8.3.5 Code Metrics ..82
8.3.6 Testing ..83

8.4 In Retrospect ..84
��6XPPDU\��

5HIHUHQFHV���

$SSHQGL[�$��'DWDEDVH�'7'� ��
$SSHQGL[�%��'DWDEDVH�'7'���
$SSHQGL[�&��6DPSOH�'DWDEDVH�0DSSLQJ��

vi

/LVW�RI�)LJXUHV
)LJXUH����'RFXPHQW�/LIH�&\FOH���
)LJXUH����&KHFN�RXW��&KHFN�LQ�DQG�0HUJH�ZLWK�9HUVLRQ�&RQWURO�6\VWHP� ������������������������������
)LJXUH����7KH�6WUXFWXUH�RI�6FHQH�0DUNXS�LQ�5HJHQHVLV� ���
)LJXUH����6*0/�'RFXPHQW�'LDJUDP� ���
)LJXUH����'LPHQVLRQV�RI�+\SHUPHGLD� ���
)LJXUH����5HODWLRQDO�'DWDEDVH�0RGHO���
)LJXUH����2EMHFW�2ULHQWHG�'DWDEDVH� ���
)LJXUH����+LHUDUFKLFDO�'DWDEDVH�0RGHO���
)LJXUH����1HWZRUN�'DWDEDVH�0RGHO� ��
)LJXUH�����'RFXPHQW�7DEOH�LQ�5HODWLRQDO�'DWDEDVH���
)LJXUH�����6*0/�'DWDEDVH� ���
)LJXUH�����$XWKRULQJ�ZLWK�DQ�,QWHUPHGLDWH�/LQN�'RFXPHQW� ���
)LJXUH�����&OLHQW�6HUYHU�$UFKLWHFWXUH�IRU�'RFXPHQW�0DQDJHPHQW�6\VWHP����������������������������
)LJXUH�����6LPSOLILHG�3,0�6\VWHP�$UFKLWHFWXUH� ���
)LJXUH�����6\VWHP�$UFKLWHFWXUH� ���
)LJXUH�����6SDUH�3DUWV�'7' >&,7��E@� ���
)LJXUH�����3RZHU�3ODQW�(TXLSPHQW�%UHDNGRZQ�6WUXFWXUH� ��
)LJXUH�����/6$5�6FKHPD��
)LJXUH�����7KH�/6$5�,QWHUIDFH� ���
)LJXUH�����6HOHFWLQJ�&RQWH[W�IURP�WKH�(TXLSPHQW�%UHDNGRZQ�6WUXFWXUH�������������������������������
)LJXUH�����6\VWHP�)LHOG�'URS�'RZQ�0HQX� ��
)LJXUH�����6DPSOH�,QIRUPDWLRQ�0RGXOH�LQ�:16�$XWKRU�7RRO� ��
)LJXUH�����0XOWLGRF�3UR�6FUHHQVKRW� ���
)LJXUH�����'RFXPHQW�6HW� ��
)LJXUH�����7KH�7UHH�9LHZ�RI�WKH�'DWDEDVH�'7' >&,7��D@��
)LJXUH�����'DWDEDVH�0DSSLQJ�'LDORJ� ���
)LJXUH�����'DWDEDVH�0DSSLQJ�&RQWH[W�0HQX� ��
)LJXUH�����0DS�7DEOHV�'LDORJ� ���
)LJXUH�����0DS�4XHULHV�'LDORJ� ���
)LJXUH�����0DS�&ROXPQV�'LDORJ� ���
)LJXUH�����0DS�5HODWLRQVKLSV�'LDORJ���
)LJXUH�����6DPSOH�'DWDEDVH�6FKHPD� ��
)LJXUH�����6DPSOH�/6$5�*HQHUDWHG�'RFXPHQW�>&,7��@� ���
)LJXUH�����'DWD�3URFHVVLQJ�LQ�D�9LHZ3RUW�6\VWHP��
)LJXUH�����9LHZ3RUW�6\VWHP�&RPSRQHQWV���
)LJXUH�����2'%&�5HFRUGVHW�&ODVVHV��
)LJXUH�����0DLQ�'DWDEDVH�([WHQVLRQV�&ODVVHV� ���

vii

/LVW�RI�([DPSOHV
([DPSOH����0DUNXS�6DPSOH� ���
([DPSOH����/D7H;�6DPSOH� ��
([DPSOH����&RQWHQWV�RI�D�6DPSOH�&7/2*�)LOH� ���
([DPSOH����6*0/�'RFXPHQW�6WUXFWXUH�$V�7H[W� ��
([DPSOH����([WHUQDO�(QWLWLHV� ���
([DPSOH����$�:HOO�IRUPHG�;0/�'RFXPHQW� ���
([DPSOH����$�9DOLG�;0/�'RFXPHQW� ��
([DPSOH����+\7LPH�FOLQNV� ���
([DPSOH����64/�6(/(&7�6WDWHPHQW� ���
([DPSOH�����0DUNXS�*HQHUDWHG�IURP�'DWDEDVH��

1

7HUPV�$QG�$FURQ\PV
Quotes are from the HyTime standard [ISO97].

DQFKRU

“An object (or a list of objects) that is linked to other objects or lists of objects by a hyper-
link.“ Object is not a formal construct in HyTime, but it can mean a document, an element
in a document, a rectangular area in a frame in a video sequence or just about anything.

DWWULEXWH

SGML and XML HOHPHQWV may contain attributes. Attributes contain PHWDGDWD of the HOH�
PHQW.

FDWDORJ

Catalog files map SXEOLF�LGHQWLILHUV to V\VWHP�LGHQWLILHUV. They are plain text files.

FRQWH[WXDO�K\SHUOLQN

“A hyperlink that occurs ‘in context’, meaning that one anchor of the link is the link ele-
ment itself [...] and is a traversal initiation anchor.“

GRFXPHQW�W\SH�GHILQLWLRQ

SGML and XML document structure specification is called document type
definition ('7'), which is the description of the structure of an 6*0/ or ;0/ docu-
ment written in a formal language.

'61

Data Source Name is a concept from 2'%&. It is possible to define a DSN for a database
and access the database with that name, without knowing the actual location of the data-
base. This is possible because the ODBC layers take care of that information.

'7'

Abbreviation for GRFXPHQW�W\SH�GHILQLWLRQ.

HOHPHQW

SGML documents consist of elements that contain other elements and text. Start WDJV
begin elements and end WDJV close elements.

HQWLW\

SGML has several kinds of entities. Parameter entities are used inside a GRFXPHQW�W\SH
GHILQLWLRQ to reuse DTD constructs. Internal entities can be used in DTDs and document
instances, and they can expand to text and PDUNXS. External entities refer to external text,

2

PDUNXS or other objects like images.

JURYH

“Graph Representation Of property ValuEs.” A grove is the parse tree that a parser pro-
duces in memory. It also contains some additional information, like links between the
nodes in the tree (or forest, which consists of multiple trees).

K\SHUOLQN

“An information structure that represents a relationship among two or more objects.”

K\SHUWH[W

“Information that can be accessed in more than one order.”

+\7LPH

Hypermedia/Time-based Structuring Language. HyTime is an international standard for
representing multimedia documents, including links. HyTime uses SGML constructs (all
HyTime documents are legal SGML documents, but one needs a HyTime-aware processor
to understand the HyTime semantics).

OLQN

For the purposes of this thesis a link is the same as K\SHUOLQN.

PDUNXS

In the case of structured documents, the document structure is specified with markup. The
markup is part of the PHWDGDWD of the document.

PHWDGDWD

Data about data, for example the creation date of a file is metadata about the file.

PLFUR�GRFXPHQW

A document, often small. Usually micro-documents are assembled to create complete
manuals.

0XOWLGRF�3UR

An 6*0/ browser by Citec Software Ltd Oy.

QDYLJDWRU

A 0XOWLGRF�3UR term for an electronic table of contents.

QRWDWLRQ

(QWLWLHV can refer to external objects of different type. For example, images can be in GIF
and JPEG format. A notation can be used to define these types.

3

2'%&

Open Database Connectivity. A Microsoft standard through which applications can access
different databases. ODBC drivers hide the actual differences between database imple-
mentations.

SXEOLF�LGHQWLILHU

Certain SGML and XML objects can be referred to by public identifiers. These include
GRFXPHQW�W\SH�GHILQLWLRQV, HQWLWLHV and QRWDWLRQV.

UHIHUHQFH�FRQFUHWH�V\QWD[

The SGML standard defines a default SGML declaration that is assumed if no explicit
SGML declaration is given. This is called the reference concrete syntax.

6*0/

Standard Generalized Markup Language. SGML is an international standard for structured
documents. Explicit structure in documents helps manage them and enables computer pro-
grams to work intelligently with the structure.

6*0/�GHFODUDWLRQ

The first part of an SGML document that specifies things like character encoding and the
maximum length of names which may be used in the document PDUNXS.

6*0/��GRFXPHQW��LQVWDQFH

The third major part of an SGML document, the “actual document“.

VW\OHVKHHW

A stylesheet describes how a document should be formatted. Structural documents usually
separate the content of the document and the style information into different files.

V\VWHP�LGHQWLILHU

A SGML SXEOLF�LGHQWLILHU is first mapped to a system identifier, which is used by the sys-
tem to locate the physical object, for example a GRFXPHQW�W\SH�GHILQLWLRQ. System identi-
fir is usually a file name.

WDJ

The PDUNXS in the 6*0/�GRFXPHQW�LQVWDQFH consists of, among other things, tags that
mark the boundaries of HOHPHQWV. A start tag begins an HOHPHQW. It is possible to give val-
ues to the element’s DWWULEXWHV inside the start tag. The 6*0/�GHFODUDWLRQ defines what
characters are used to begin and end tags. The UHIHUHQFH�FRQFUHWH�V\QWD[specifies that <
opens a start tag, </ opens an end tag and > closes a tag. This is a sample start tag:
<title lang=”en”> . End tags close elements, and they cannot have attributes. The
end tag for the start tag would look like this: </title> .

4

ZHE

A web in 0XOWLGRF�3UR term which refers to a file that can be loaded over an existing
SGML document and which may contain user defined links, annotations and bookmarks
for that document.

;0/

Extensible Markup Language. XML is a World Wide Web Consortium Recommendation
(effectively an Internet standard). XML is a simplified subset of SGML.

&KDSWHU���

,QWURGXFWLRQ
Everything has structure.

Unknown

The driving force for this paper was the Product Information Management project started at Wärt-
silä NSD Power Plants (in Vaasa, Finland) to overcome problems in product documentation. The
solutions presented in this paper were developed mostly in 1996 and 1997.

This thesis describes how product documents in structural format can be managed effectively with
relational databases. The structural document format this thesis deals with is Structured General-
ized Markup Language (SGML), which is an International Standards Organization (ISO)
standard [ISO86].

SGML has also evolved for the World Wide Web (WWW). This format of SGML is known as the
Extensible Markup Language (XML) and it is a World Wide Web Consortium (W3C)
Recommendation [W3C98]. Prior knowledge of SGML nor XML will not be needed to under-
stand this thesis as they will be explained with sufficient details to understand this document.
Relational databases and Product Data Management (PDM) will also be described briefly for the
same reason. From the point of view of this thesis SGML and XML are nearly identical. Differ-
ences will be clearly pointed out where they matter. This thesis generally refers to SGML as the
structural format, but generally XML could be used equally well.

6

This thesis will show the importance of effective management of product documents. The advan-
tages of standardized, structured format will be shown to be superior to traditional approaches.
The management of such documents is equally important. It will be explained why relational
databases, while not the most advanced technology available today, are still good for the job.
Moreover it will be shown that it is feasible to retrieve information from both databases and struc-
tured sources and combine the information so that it can be shown as a structured document.
Methods for using databases to manage SGML and XML documents and assemble large docu-
ments from document fragments will be discussed as well.

This document is divided into two parts. The first part explains the different standards and tech-
nologies used and discusses the theory behind the practical part of this thesis. The first Part is
divided into five chapters. Chapter 2 describes product data management. Chapter 3 describes
structured documents. Chapter 4 explains databases and the last chapter in the first part discusses
the theory of managing documents with databases.

The second part is divided into four chapters and it describes the SGML document management
system at Wärtsilä NSD. Chapter 6 gives an overview of the system. Chapter 7 describes the doc-
ument authoring process and Chapter 8 how the different documents are managed and assembled
into larger units.

The implementation of the tools described in the second part happened mostly in 1996 and 1997.
Some software available at that time has disappeared from the market while new products have
appeared in their place. Great advances in standards and other technologies have occurred. The
implemented technologies will be discussed in light of new information.

Each chapter begins with a quote, often from a science-fiction novel. The quote is somehow
related to the chapter in question. The actual relationship is left as an exercise to the reader.

Some images (screenshots particularly) are not of the highest quality. That is because the original
image was in some non-vector format like GIF that suffers from scaling. Scaling was needed in
many places to make the images fit on paper.

This document itself is in structured format. The first drafts were written with Adept•Editor1.

Additional work was done with various other SGML editors including FrameMaker+SGML2,
which was also used for printing and conversion to various other formats. Occasionally text was
edited with plaintext editors. The Document Type Definition (DTD) was the Docbook
DTD [OAS99], which was slightly modified for the needs of this thesis. The original structured
format was SGML, but simple transformations were made to create an XML version as well.

There are Synex ViewPort3 stylesheets as well as Cascading Style Sheets (CSS) [W3C96] for this
document, which allows viewing of this document in any SGML or XML-capable browser that
supports either of the two stylesheet formats. Additionally, PostScript and PDF versions of this

1. Adept•Editor is a product of ArborText Inc.
2. FrameMaker+SGML is a product of Adobe Systems Inc.
3. Synex ViewPort is a product of Synex Information AB, a fully owned subsidiary of Enigma, Inc. See

http://www.synex.se.

7

thesis were extracted for final printing. An HTML version was also produced to allow viewing of
this document with less advanced Web browsers.

Some words about the SGML markup used in this document is in order. The first occurrence of an
important term is wrapped in FirstTerm element and is formatted in EROG�IDFH on paper. Code
and SGML markup examples may be nested inside one of several different elements, but it will
always be formatted with fixed pitch Courier font. The term element will be explained
later. Most of the acronyms and terms are also explained in Terms and Acronyms. Longer code
and markup examples are numbered, as shown below:

([DPSOH����0DUNXS�6DPSOH�

<tag>Some SGML/XML sample</tag>

&KDSWHU���

3URGXFW�'DWD�0DQDJHPHQW
,�GRQ¶W�XQGHUVWDQG, came Briareus’s code on the common band. ,W�RSHQHG�WR�QRZKHUH.

1RW�WR�QRZKHUH, sent Nemes, reeling in the filament. -XVW�WR�QRZKHUH�LQ�WKH�ROG�:HE��1RZKHUH�WKH�&RUH�KDV
EXLOW�D�IDUFDVWHU�

7KDW¶V�LPSRVVLEOH, sent Scylla. 7KHUH�DUH�QR�IDUFDVWHUV�H[FHSW�IRU�WKRVH�WKH�&RUH�KDV�EXLOW�

Nemes sighed. Her siblings were idiots. 6KXW�XS�DQG�UHWXUQ�WR�WKH�GURSVKLS, she sent. :H�KDYH�WR�UHSRUW�WKLV�LQ
SHUVRQ��&RXQFLOORU�$OEHGR�ZLOO�ZDQW�WR�GRZQORDG�SHUVRQDOO\�

Dan Simmons, 7KH�5LVH�RI�(QG\PLRQ

Product Data Management (PDM) is a way to manage people and other resources and product
development processes. It is crucial to most companies and organizations. As such it is no wonder
there are several opinions about it and lots of material about it. Good overall guides to the subject
are, for example [CIM98] and [PDM97a]. These works were used as source material for this
chapter. PDM has also been the target of extensive standardization work. The most well-known
standard for product data is, without question, the Product Data Representation and
Exchange (STEP) [ISO94].

The practical part of this thesis evolved because of a need for better management of documents.
To understand document management some knowledge of the more general problem of Product
Data Management is needed. This chapter will give a brief introduction to these concepts or the

9

relevant concepts in this area. In addition, product document management is introduced and the
justification for its importance is pointed out.

����:KDW�,V�3URGXFW�'DWD�0DQDJHPHQW"

Product Data Management can be thought of as the umbrella word covering (among other things)
Engineering Data Management (EDM), document management, Product Information Manage-
ment (PIM) and technical data management. It is being used anywhere there is some kind of a
product being manufactured, sold or maintained. The word product should be understood very
widely. A product can be anything from an airplane to a computer program or a service. “The
Challenge is to maximize the time-to-market benefits of concurrent engineering while maintain-
ing control of your data and distributing it automatically to the people who need it - when they
need it” [PDM97a].

PDM evolved from systems built in-house into commercial systems in the 1980s. The vendors in
those days were already involved with CAD or other computer aided engineering systems. Ini-
tially the systems were mostly concerned with just engineering data, but recently support for the
whole product life cycle has improved as well [PDM97b].

A PDM system consists of a data repository or vault (often a relational database), a set of user
functions and a set of utility functions. A PDM system’s commands are either embedded into
other applications (CAD, word processors and so on) or the commands from those other systems
are embedded into the PDM system.

The PDM system stores two kinds of data: product data and PHWDGDWD. Metadata is data about
data, and in the case of a PDM system it helps the PDM system carry out the tasks it is supposed
to do. The distinction between data and metadata is a bit vague. One application’s data can be
metadata for another application.

The user functions in a PDM system can be divided into five categories: document management,
workflow and process management, product structure management, classification and, finally,
program management. The PDM system must securely and effectively manage and protect the
data from both accidental or deliberate attempts to destroy data integrity. Logged access control
keeps track of who has got what information and when they have obtained it. Access control can
also prevent unauthorized access to data. Release management makes sure the data goes through
the required steps before ending up at the customer (for an example, see Figure 1). Document
management (or version control) can take care of logging and managing ad hoc demands to data.

Workflow and process management can make the system proactive. Predefined paths for data can
be set up for repetitive tasks, which not only ensures the correctness of the overall task, but also
improves efficiency. This is very closely related to the conveyor belts in a factory. Product struc-
ture management covers bills of materials as well as product configurations. Bills of materials can
even be created automatically from product structures. As all information is gathered in a central
place, it is easy to see what things will be affected by changes. Finding the information in the first

10

place is easy as well. The PDM system can show different views of the data, such as structural
relationships, documentation and support information. Classification allows grouping of similar
parts and information, which in turn can cut the time spent in re-design. Finally, program manage-
ment completes the user functions. Program management tools provide work breakdown struc-
tures to make it easier to arrange resources, predict schedules and, in general, track how projects
are doing.

Customization is needed to better fit an off-the-self PDM system to an organization’s needs. The
utility functions offer a way to do this without reprogramming the whole PDM system. The utility
functions are also needed to support the user functions described above. Typical utility functions
include communication and notification services, data transport, data translation and system
administration as well as customized reports for different user groups and purposes.

Communication is improved simply by using a PDM system because everyone using the system
has access to all the information in the system (access control restrictions apply, of course) in real
time. The PDM system can automatically send notification emails about unexpected delays or
otherwise important happenings. The system can automatically transfer data from its storage to
the user, so the user need not know where it is actually located. Even in a moderately large organi-
zation not everyone can work with the same exact word processors and drawing programs so
automatic data translation or transformation can be set up in the PDM system. Administration
functionality offers utilities to change access control, workflows and data-backup.

As can be seen from the wide area of functionality covered, a PDM system must be designed in
such a way that third-party components can be readily integrated into the main system. The
default user interface and terminology used in the PDM system may also be customizable for the
specific or unique needs of each organization using the system.

That pretty much covers the basics of product data management. As this thesis is mostly con-
cerned with documents and documentation, lets take a more thorough look at documentation and
document management.

����7KHUH�,V�1R�3URGXFW�ZLWKRXW�'RFXPHQWD�
WLRQ

Simply put, there are no products that do not have documentation associated with them.

Let us think of a nail: A straight thin piece of iron or some other material, sharp at one end and
flattened at other. One would imagine a product cannot be much simpler than that. But we shall
take a closer look.

Let us say we would like to make a new nail. First we must determine where it should be used.
This requires some thought and maybe research, which will produce our first documents. Suppose
there was an area that would benefit of a new type of a nail. Then we must inspect the require-

11

ments, which will require additional documents. These documents could say that the nail must be
at least three inches in length but no more than four inches, it must be able to withstand corrosive
substances and it must be very thin. We would then manufacture some prototypes that would go
into testing. We would get test reports. By the time the nail is perfect in its design we would have
a big pile of paper (or at least lots of files on a computer). The nail would then be manufactured in
large quantities, the factory might need to be customized for it, some subcontractors would proba-
bly be required to deliver the alloys and so on. By the time the nail reaches retail shops there
would be a mountain of information about it. And it would still go on: customers would give feed-
back, there would be sales figures and so on. Today one just cannot live without documents.

Given this simple example with the nail it is remarkable that product documentation is usually in
very bad shape. In many cases documentation is seen as the least important piece of the whole
product. The process to create a user manual for a product often does not start until the product is
ready to be shipped to customers. This may lead to delays in the product release. A very bad situ-
ation indeed. A nail would not have too big a user manual, but a cellular phone or diving gear
would be almost useless without some kind of instructions.

A document is as important part of a product as any other tangible thing. Maybe even more so. In
this information society knowledge is regarded as the most precious commodity. In some cases
the document itself is the product.

The same rules that govern the management of other products apply to document management as
well. Typical life of a document is presented in Figure 1. The planning for a new document usu-
ally begins when a new product is being planned, or a need for a certain kind of a document is dis-
covered. New legislation or company policies often result in new documents. Authors or technical
writers create the actual document content with the help of other documents or experts. The
authoring work is often easy to outsource.

The document then goes through the checking phase where facts, spelling, readability and other
things are checked. It can be returned back to the author (with more documentation explaining
what was wrong) or it can advance through the approval process. The persons that approve docu-
ments often take the legal responsibility that the document is correct. If the document is a user
manual for a machine that can potentially be dangerous to humans this is a big responsibility
indeed. Once the approval stamp is on a document it is considered “frozen” and it is released, pos-
sibly with other products. User comments and new versions of products can trigger changes to the
documentation which end up in new “frozen” revisions of the original document.

Check-in, check-out and locking are important concepts in document authoring. A document
database handles these tasks and the database holds the single up-to-date copy of any given docu-
ment. When a user wants to edit a document, he must first check out a work copy from the docu-
ment database. The database marks the document as locked and will only allow reading of the
locked document. Once the user has finished editing, he must check the document back in. This
clears the lock. Often, only the differences between document versions are stored to save disk
space. Some systems have more advanced locking models; for example a document can have
multiple locks, some locks can deny reads and so on.

Documents can be prepared as if they were being built on an assembly line. The planning phase

12

may create some skeleton documents and additional guidelines for the document. Multiple
authors can add to and refine the skeleton document one after the other until it is finished. An
automated workflow system can improve productivity immensely, because moving a “job” from
one person to the next is instantaneous. Because the workflow has been etched into the computer
system the “job” will always move to the person it is supposed to go to and not to somebody else.
In some large corporations files can sit for days waiting to be moved from one person to another.

)LJXUH����'RFXPHQW�/LIH�&\FOH�

If a document database is being used, documents may also be edited simultaneously by multiple
authors. Document databases that are specialized for structured documents can easily lock parts of
documents while allowing edits in other parts. Normal version control systems can handle simul-
taneous edits if the documents are not in a binary format.

Let us consider an example where two authors are editing the same document at the same time.
The first author to check his changes in does not notice anything unusual, but the second author
will notice that the version control system reports that his version does not match what is in the
version control system and merging is required. In some cases the system can do an automatic
merge while in other cases manual work is needed. The situation with two authors editing the
same document with the help of a version control system is presented in Figure 2. The boxes
labeled Doc <number> show the document stored in the version control system, and the num-
ber refers to the version number in the version control system.

WritePlan a new
document Check Approve

Not correct
Not approved

Release

Change requests

13

)LJXUH����&KHFN�RXW��&KHFN�LQ�DQG�0HUJH�ZLWK�9HUVLRQ�&RQWURO�6\VWHP�

Next we will have a look of the economic issues concerning documents and documentation.

����(FRQRPLF�,VVXHV

The amount of time and money spent on producing new information is staggering. For example,
20% of the GNP of the United States is spent on generating new information. Over 90% of the
information is in documents [Arb95]. The amount of electronic documentation is growing 20-
60% each year while the same figure is 10% for paper documentation (in the USA) [Onn99].

Here is a specific example having to do with oil rigs. It is estimated that about half of the manu-

facturing costs is in documentation [Pel97b]1. A recent newspaper mentioned that the cost of set-

ting up a new oil rig in the Norwegian waters would cost over 11 billion Finnish marks2. Even a
moderate 10% saving in documentation would therefore save nearly 600 million Finnish marks
from the total costs of such an oil rig.

The World Wide Web is also growing rapidly. The amount of text in English grows about 50% per
year. The figure for non-English pages is 90%. This will also lead to an increasing need for
translations [Kla98].

It has been estimated that authors spend up to 30% of their time searching for information and
roughly the same amount of time laying out the text to produce nice printouts [Arb95]. SGML
addresses both aforementioned areas of authoring. First, because of SGML’s structured nature,
documents conforming to this standard can be archived and searched much more efficiently than,

1. This was also mentioned in the presentation “Toward STEP Interchange: Seeing the Document as a Snap-
shot of the Data” given by Daniel Rivers-Moore at the 4th International HyTime Conference in Montreal,
Canada.

2. This was mentioned in an article in the Finnish “Kauppalehti” during winter 1999. 11 billion Finnish
marks is roughly 2 billion US dollars.

Doc
1.0

Doc
1.1

Author B

Author A

Check-out

Doc
1.1

Doc
1.1

A Check-in

Doc
1.0

Doc
1.1Author B

Author A

Doc
1.1

Doc
1.1+

Doc
1.2

B Check-in

Doc
1.0

Doc
1.1

Author B

Doc
1.1+

Doc
1.2

Docmerge

Version Control
System

1.3

14

say, Microsoft Word documents. Secondly, authors do not have to spend their time worrying about
the layout. This is often unproductive use of time as the publisher will want to change the layout
to conform to their standards. Laying out and publishing an SGML document can be completely
separated from the authoring process.

Technical manuals are often huge, while usually only a small part of the whole document is
needed. The nature of SGML makes it easy to extract tailored subdocuments from large docu-
ments. SGML databases make it possible to have multiple authors working on the same document
at the same time, because each author needs to lock only the small piece he is currently working
on.

Other important areas not yet mentioned include document interchange and long term storage.
While standard word processors emerge with a new proprietary save format for every major
update, SGML has been around since 1986, and is likely to remain usable for decades — that is
why the term “Everlasting Information” is sometimes used with documents conforming to the
SGML standard. Without long lived, standard document formats our electronic era can leave a
black hole in information to future historians because it may simply be impossible to find both the
software and hardware to read some exotic file format in the future. Already it is nearly impossi-
ble to read the data from early magnetic tapes and punched cards! With SGML only DTDs
evolve, and changing document instances so that they conform to newer versions of DTDs is gen-
erally a lot easier than changing some word processor's format. Different versions of DTDs can
also coexist, so conversion in many cases is not even needed. In addition, SGML is platform inde-
pendent i.e. as long as ASCII files can be transferred from one system to another can SGML files
be interchanged. Archival issues have been explored, for example, in [Onn99] and [Met99].

This section has developed the claim that SGML can make documents and the processes needed
in documentation more effective. The following chapters will show how and why is this possible.

&KDSWHU���

6WUXFWXUHG�'RFXPHQWV
HyTime is the borg standard.

W. Eliot Kimber

All the information we have gathered into something that could be considered to be a document
has structure. Sometimes the structure is very explicit, like in a computer program, so that even
computers can understand them. Other documents have only implicit structure, and we may not
even know or recognize that something has structure. For a human being a computer program rep-
resented as 0’s and 1’s would be meaningless, and devoid of structure. On the other hand, most
computer programs would not make anything out of this paragraph. The information in this chap-
ter was collected mostly from [Tra95], [Gol90], [W3C98], [DeR94] and [Kim98].

����:D\V�WR�,QGLFDWH�6WUXFWXUH

All documents have at least implicit structure. For some documents the structure has been
declared explicitly, either internally or externally. If the structural information is internally con-
tained in the document, it is usually called markup.

LaTeX [Lam94] is an example of an internal document markup language; where the structural

16

and layout information is mixed with the content. The beginning of a section, in the source file,
looks something like this:

([DPSOH����/D7H;�6DPSOH�

\section{Onion Pie}
\begin{list}
\item large onions

\item large tomato ...

The example above would be formatted by a LaTeX system so that a section heading would
appear first, followed by a bulleted list of ingredients for the onion pie. How the heading and list
would appear can be defined (although this is rather difficult), but the default heading would look
pretty much the same as the section headings in this thesis. All the markup (like
\begin{list}) would be processed by the software and it would not end up in the actual lay-
out.

An example of external markup is the graphics format for Regenesis1, the first graphical multi-
user dungeon (MUD). The graphics are simple colored polygons that consist of a maximum of 32
vertices. There can be a maximum of 32 polygons in a scene. Regenesis uses 16 colors. The coor-
dinate system is a 256 by 256 matrix. An image is represented as a string of hexadecimal num-
bers. As such it has no apparent structure. But that string has structure when it is viewed with the
external information: the programs drawing the images must of course know what to do with the
string! The first two characters from the string, when converted to a hexadecimal number, is the
number of polygons in the string, the next number is the number of vertices in the first polygon
and so on. See Figure 3 for sample.

)LJXUH����7KH�6WUXFWXUH�RI�6FHQH�0DUNXS�LQ�5HJHQHVLV�

There is a hybrid version of the internal/external markup. Some documents contain the structural

1. Regenesis may have been the first online game with graphics. Its “children” are Doom, Quake and War-
bird, for some examples. There is a WWW page describing the MUD at http://www.lysa-
tor.liu.se/mud/bsxmud.html. To actually play the game one needs a client program that
contacts the MUD server. Regenesis was originally written by Bram Stolk.

02040400000A000A...

Number of polygons

Number of vertices
in the first polygon

Color of the first
polygon

X-coordinate of the
first polygon

17

markup in the beginning or in the end of the document, which contains pointers to the actual con-
tent. Microsoft Word uses this technique [Tra95].

Structured documents are normally formatted to get usable view of the data. It would not make
much sense to try to read the binary representation of a computer program, for example. Running
the program presents the structured data in an understandable format.

����/DQJXDJHV�$QG�3DUVHUV

Structured documents use some language to describe the structure. For example, the C++ pro-
gramming language is standardized and there is software that can do meaningful things with data
in C++ notation.

All languages (or more precisely, grammars) can be divided into several different categories, for
example regular and context free languages. Any book on the theory of computation or compiler
design will discuss the theory of languages, for example [Sip96]. There is no need to understand
language theory in depth, for the purposes of this paper, and this subject will not be explained in
detail. A rudimentary knowledge of basic language theory as taught in elementary computer sci-
ence, however, will be assumed.

A parser is a software component that can read data conforming to some grammar and build an in-
memory representation of the structure (or generate events based on the structures found in the
language). A parser that builds an in-memory representation of the data will typically be slower
than an event-based parser. And it cannot handle as large documents as the other parser type that
can discard data as soon as it has recognized and generated an appropriate event. It is possible to
combine the two parser types, however, so that generally the stream-based parser is used to scan
quickly to an interesting part after which an in-memory representation of that part is built.

The in-memory representation of data (or events) is easier to handle programmatically than the
raw data, and it makes it possible to change the document language somewhat without requiring a
rewrite of the components that use the processed structures. The parser can also detect errors in
the document (i.e. if the document does not conform to the expected grammar), and stop further
processing because the data would appear to be corrupted. Application programmers do not need
to worry about certain kinds of errors because of this parser feature.

Standard Generalized Markup Language documents belong to the category of internally marked-
up structured documents. Some people have voiced their opinions that internal markup is too lim-
iting and that SGML should be revised to offer external markup [Nel97].

18

����6WDQGDUG�*HQHUDOL]HG�0DUNXS�/DQJXDJH

Standard Generalized Markup Language, or SGML [ISO86] for short, is an international standard
for structured documents. To be more exact, SGML is a metalanguage which means that SGML is
used to describe other (structural) languages.

������$�%ULHI�+LVWRU\�RI�6*0/

Before going into the gritty details, let us take a journey into the history of SGML (the following
is collected from [Gol90]). Even before computers existed, manuscripts were annotated with spe-
cial comments to describe how the text should appear. These special comments were called
markup. Electronic manuscripts also contained these control codes or macros. These codes could
be said to be VSHFLILF�FRGLQJ. *HQHULF�FRGLQJ began in the late 1960s, the most visible change
being that macros and codes got names like heading instead of some obscure label or directive
like format-13A3.

The credit for this change is often given to William Tunnicliffe, who gave a speech in 1967 on the
topic of separating the information content of documents from the formatting rules. At about the
same time a book designer named Stanley Rice presented his idea of a “universal catalog of
parametrized HGLWRULDO� VWUXFWXUH tags”. Norman Scharpf (director of the Graphic Communica-
tions Association) realized the importance of these developments and began promoting the cre-
ation of standards in this area.

Charles Goldfarb, together with Edward Mosher and Raymond Lorie, was working on an IBM
research which claimed to enable text editing, formatting and information retrieval subsystems to
work together and to share documents. The result of their work was Generalized Markup
Language (GML). GML was based on the ideas of Tunnicliffe and Rice, but it went further, intro-
ducing formal document types and nested element structure.

In 1978 Charles Goldfarb, who had continued his research even after GML was finished, joined
the Computer Languages for the Processing of Text committee under the American National Stan-
dards Institute (ANSI). Eventually he was leading the development of the SGML standard. The
first working draft was published in 1980, and after several more drafts and recommendations for
industry standards, SGML was finally published as an International Standards of Organization
standard ISO 8897:1986.

������6WUXFWXUH�,V�1RW�/D\RXW

It has been said that all documents have structure, but let’s take a memorandum for an example. A
memorandum may have a title, date, author and the actual content of the memorandum. Structure
can be considered to be a part of the metadata of a document. Metadata is simply information
about information, i.e. what it deals with, how the information is stored, in what order certain

19

items appear and so forth. Metadata is QRW the actual FRQWHQW of the document. The structural
information in an SGML document instance is called markup.

Structure should QRW be confused with the OD\RXW of a document, although the structure of docu-
ments is usually emphasized with special layout. For example, titles in this document are printed

with a larger font than the rest of the text.

������6*0/�LQ�D�1XWVKHOO

SGML is used to create vocabularies for real document languages. The vocabulary specifies what
names can be used in the language. Similarly, the grammar specifies in what order the elements
can appear and if they can repeat and so forth. The defined names can also have meta-information
associated with them. Usually, the names are container objects that can contain other containers
and plain text. The languages defined by SGML are typically infinite in the sense that one cannot
write out all instances of documents conforming to a given language. The languages defined by
SGML are not regular, although the content model of an element is regular. One cannot use
SGML to define context-free grammars [Pre98].

SGML stores structural metadata information about classes of documents in Document Type Def-
initions (DTD). An actual document that conforms to a certain DTD is called an SGML document
instance. In short, all real SGML documents are instances of SGML documents conforming to
certain DTDs.

SGML documents have three parts in them: the 6*0/�GHFODUDWLRQ, the GRFXPHQW�W\SH�GHILQL�
WLRQ and the 6*0/�LQVWDQFH conforming to the document type definition (see Figure 4). Example
4 shows the document in text form (the SGML declaration is omitted for brevity). The three parts
can be in a single file or in separate files.

)LJXUH����6*0/�'RFXPHQW�'LDJUDP�

SGML Document

SGML Declaration

DTD

SGML Document
Instance

20

If the declaration or DTD is to be reused in other document instances, it is of course advisable to
separate them. This poses some problems, because SGML itself does not specify how the process-
ing application can find the different parts. One widely accepted method is to refer to the Docu-
ment Type Definition in the document instance with a public identifier. Public identifiers are
mapped to actual file names and locations thruogh a FDWDORJ, typically a simple text file. Example
3 shows the contents of a sample catalog file. This ad hoc standard has been proposed by the

OASIS1 vendor consortium.

The catalog can be used to locate the SGML declaration as well. However, the SGML standard
defines a UHIHUHQFH�FRQFUHWH�V\QWD[, a declaration that is assumed if no declaration is given. The
SGML declaration defines — among other things — what characters are used to distinguish the
SGML markup from the actual text.

([DPSOH����&RQWHQWV�RI�D�6DPSOH�&7/2*�)LOH�

PUBLIC “-//Heikki Toivonen//DTD Memo//EN” “memo.dtd”

Usually the reference concrete syntax is enough for most documents, although it has some rather
frustrating limitations like name length limited to eight characters. Nowadays most software
packages use the reference concrete syntax as a base, but extend it to enable longer names and
remove some historical remnants that were required in the early days of SGML when computers
where not as powerful as they are today.

The SGML declaration is not very interesting for the normal user of SGML. Instead, the DTD and
document instances are more important. The ability to read and understand DTDs and document
instances is sufficient for writers [Tur96].

������'7'�$QG�'RFXPHQW�,QVWDQFH

Refer to Example 4 for clarification of the following definitions.

The reference concrete syntax specifies that declarations in a DTD start with <! and end with >.
After the <! comes a keyword specifying what sort of thing is being declared. Usually the key-
word is ELEMENT, ATTLIST or ENTITY. ELEMENT declares an element name that can be used
in the SGML instance, ATTLIST defines attributes for an element and ENTITY can define differ-
ent sorts of entities (like references to external images or video sequences).

In an element declaration, after the element name, it is possible to specify if the start and/or end
tag of the element can be omitted. An end tag can be omitted when the parser can detect from the
next element that the current element must be closed. No look ahead is needed or even allowed in
the parser. The tag omit rules are specified with a minus (−) and letter o, o meaning omissible.

The second to the last part of the element declaration is the content model. The content model can

1. OASIS was formerly known as SGML-Open.

21

contain other element names and/or special keywords. Element names are separated with a
comma (,) if the elements must appear one after the other, bar (|) if only one is allowed and
ampersand (&) if the elements can appear in any order. It is possible to specify that an element is
optional by putting a question mark (?) after the element’s name. It is also possible to say that an
element must occur one or more times with a plus (+), or zero or more times with an asterisk (*).
Special keywords common in the content model parts are #PCDATA and EMPTY. #PCDATA
means parseable character data, i.e. normal text. An EMPTY content model cannot be combined
with any other content model element names or keywords as it means that the element does not
have any content. In that case information about the element is only in its attributes. Parenthesis
can be used to group parts of the content model.

The last part of the element declaration can be used to specify inclusion or exclusion exceptions.
Inclusion exceptions are elements that can appear anywhere inside the element being defined,
including its children. Exclusion exceptions disallow the exclusion element from anywhere in the
defined element, including its children. Exclusion has higher precedence that inclusion. Typical
inclusion exceptions are page break and cross-reference elements that can often appear anywhere.
A typical exclusion exception would deny page break elements inside title elements.

An element can have multiple attributes. Attributes have a name, a data type and a keyword spec-
ifying if the attribute is required (#REQUIRED) or optional (#IMPLIED). An attribute can also
have a default value. Common data types are CDATA (for normal text) and NUMBER (obviously a
number) as well as ID and IDREF for cross-referencing. Data types can also indicate multiple
entries, for example NUMBERS and IDREFS. Multiple entries are separated with spaces. If an
attribute value has spaces or other separator characters in it (as specified in the SGML declara-
tion), the value(s) must be quoted. The reference concrete syntax specifies two legal quote charac-
ters, both quote (“) and apostrophe (‘).

Usually entities declared in the DTD are parameter entities, which are used to make the DTD eas-
ier to read and manage. Entities declared in a GRFXPHQW�GHFODUDWLRQ�VXEVHW are normally used to
refer to external SGML document fragments and images. The document declaration subset is
enclosed within square brackets ([and]) in the beginning of the document instance. Comments
appear between <! −− and −−>.

The SGML document instance contains the document’s data. The data is mixed with the SGML
markup. The reference concrete syntax specifies that start tags start with < and end with >. End
tags start with </. Attributes are specified in the start tag between the element name and the clos-
ing >. To put it simply, an attribute is a name-value pair. The name and value are separated by =.
SGML also allows only the attribute value to appear if there can be no ambiguity as to which
attribute is intended.

Example 4 shows an SGML document with its DTD (the SGML declaration has been omitted for
brevity).

The DTD starts with the DOCTYPE keyword, followed by a public identifier (the identifier could
be omitted, or there could be a system identifier or both a public and a system identifier). The
public identifier can be used in other documents to refer to this DTD. In the DTD there is first a
definition for a notation called GIF, with a system identifier for the notation. The notation is later

22

used in the definition that defines an image entity, where the image type is GIF.

The element definitions start with memo (the order of definitions is not important, by the way). It
has a required start tag and an optional end tag. The element memo can contain an optional
title, followed by one or more paras and zero or more images. Element memo has three
attributes: an optional language, a required id and secret, which can have two possible val-
ues with open being the default value. Other elements are defined similarly. The image element
deserves special mention. It has a content model of EMPTY, meaning it cannot contain any other
elements or text. The information for that element is in its attributes. In this case, the element has
one attribute pic, of type ENTITY, and the attribute must always be specified in the document
instance.

The document instance begins with the memo start tag. The instance shows all the required start
and end tags of the elements. para and image do not have their end tags, which is legal because
the DTD allows this. All required attributes are also specified. The pic attribute of the image
element refers to the tooth entity specified in the DTD, and this should show up as an image of
a tooth in an SGML browser.

([DPSOH����6*0/�'RFXPHQW�6WUXFWXUH�$V�7H[W�

<!SGML ... >

<!DOCTYPE memo PUBLIC "-//Heikki Toivonen//DTD Memo//EN" [

<!NOTATION GIF SYSTEM>
<!ENTITY tooth SYSTEM "tooth.gif" NDATA GIF >

<!ELEMENT memo - o (title? , para+, image*) >
<!ATTLIST memo
language CDATA #IMPLIED
id ID #REQUIRED
secret (open | internal) "open" >

<!ELEMENT title - o (#PCDATA)>

<!ELEMENT para - o (#PCDATA)>

<!ELEMEMT image - o EMPTY>

<!ATTLIST image

pic ENTITY #REQUIRED>

]>

<memo id="unique-id-1" language="English">
<title>Remember Dentist!</title>

<para>Dentist tomorrow at one o’clock.

23

<image pic=’tooth’>
</memo>

������([WHUQDO�(QWLWLHV�²�$�6LPSOH�:D\�WR�5HXVH�$QG�0DQ�
DJH�7H[W�)UDJPHQWV

External entities are such a critical part of this thesis that it is important to get the basics right. An
external entity declaration contains the entity name followed by a public identifier or a system
identifier or both. Additionally, a notation type can be specified. If there is no system identifier,
the processing application must somehow get the system identifier and acquire the contents of the
entity. The OASIS catalog is a good way to map public identifiers to system identifiers. It should
be noted that a system identifier is exactly what the name says. It is not necessarily a file name. It
could be a database query or just about anything. As long as the processing system knows what to
do with it, it can use any means or description desired to cause the contents of the entity to be
made available to the SGML processor.

An entity is used in a document by simply inserting the entity’s name, surrounded by an amper-
sand (&) and semi-colon (;), where it is wanted. Similarly, special characters that are not present
in the character set used can be inserted into the document. So, for example, the letter ä is usually
represented with an “umlaut” entity called auml as ä.

It is possible to define a default entity whose contents will be used for entities that are not defined.
The entity text could say for example @@Undefined entity@@ to indicate that it should be
defined at some point. This is sometimes used to make documents containing undefined entities
valid.

External entities allow reuse of parts of documents in other documents even if the files are saved
in a normal file system. For example, a manual consisting of several chapters could be con-
structed so that each chapter would reside in its own file. The whole manual would need to be
assembled from these files. How this might look like in SGML is shown in Example 5. Now, if
there were several manuals and the first chapter was an introduction that was identical in all man-
uals it would be a simple matter to reuse the first chapter. Of course this saves space, but the more
important bonus is that by changing the first chapter all documents using it would be immediately
updated. Automatic update may not be wanted in every case but it is impossible to prevent this
without additional tools if reuse is what is wanted. Unfortunately reality sucks, and not all SGML
tools support this external entity approach very well even though it is quite simple.

([DPSOH����([WHUQDO�(QWLWLHV�

File manual.sgm:
<!DOCTYPE manual PUBLIC “-//Heikki Toivonen//DTD Manual//EN“ [

<!ENTITY chap1 SYSTEM “chap1.inc“>

<!ENTITY chap2 SYSTEM “chap2.inc“>

]>

24

<manual>&chap1;&chap2;</manual>

File chap1.inc:
<chapter><title>Introduction...</chapter>

File chap2.inc:
<chapter><title>The Life of Brian...</chapter>

The problem with the external chapters in Example 5 is that they themselves are not valid SGML
documents. They need to be included in a manual that has the DOCTYPE header information.
There is a rarely used SGML feature called SUBDOC that would make it possible to create the
chapters as standalone documents and it would still be possible to include them in the manual file.
Very few tools support it, though.

������8VHUV�RI�6*0/

The value of SGML was first fully realized in large corporations and organizations, like the U.S.
Department of Defense. Other large companies using SGML now include Nokia, Novell,
Microsoft and Hewlett-Packard.

Although the original users were mainly involved with the military, the commercial wing has
caught up. The greatest interest in SGML seems to be in areas like telecommunications, aero-
space, manufacturing, publishing and pharmaceuticals. This does not mean that SGML is not
suited for other users. It so happens that the aforementioned areas share the characteristic that they
produce huge amounts of documentation that has to be maintained and manipulated effectively.
However, the amount of documentation is not the only indication that structured documents might
be a good solution to better manage the information. Frequent updates, multiple authors, long
term storage and stringent validation requirements are other indicators, to name a few. The Exten-
sible Markup Language (discussed below) is rapidly bringing smaller players into the picture as
well.

SGML should generally not be used where the information is used only once, it easy to reproduce,
it is not important or, in short, the opposite of what was mentioned before. Typical examples of
documents that would not benefit from SGML include notes and informal letters.

It may be interesting to note that HyperText Markup Language (HTML) is SGML. HTML is sim-
ply an SGML DTD. However, HTML follows rather loosely the philosophy underpining SGML.
For example, HTML has page formatting elements, which are completely against the principles of
SGML.

Regardless of HTMLs deviance from SGML principles, it has done a great job of advertising the
benefits of structured documents, along with World Wide Web (WWW), of course. The Web itself
is becoming more “mature” in a structural sense. The appearance of Extensible Markup Language
enables web authors to mark up their documents with descriptive markup instead of the restricted
HTML tag set. This will eventually bring smart search engines to the web that can use the docu-
ment structure to achieve better signal to noise ratio [Mya98].

25

����([WHQVLEOH�0DUNXS�/DQJXDJH

The Extensible Markup Language (XML) [W3C98] is the little brother of SGML. The credit for
the birth of XML is often given to two men in particular: Jon Bosak and Tim Bray. Their hard
work to bring SGML to the World Wide Web resulted in XML. It has succeeded in bringing the
true power of SGML to the masses. It is easier to parse and use than SGML, which makes it easier
to write XML applications, not to say faster and cheaper. All valid XML documents are valid
SGML documents, but not vice versa.

XML did away with some of the historical baggage SGML was carrying around to make it easier
to process. For example XML does not allow exceptions (see Section 3.3.3) nor is it possible to
omit tags in XML. Because tags cannot be omitted the characters - and o just after the element
name in element definition are no longer used in an XML DTD.

The only valid character set is Unicode [ISO93], while in SGML the character set can be speci-
fied in the SGML declaration. Because the Unicode code base could potentially include practi-
cally all characters there are or ever will be, no character entities are used — meaning ä is
encoded as ä instead of ä . Numerical entities can still be used (for example for characters
that cannot be typed). Numerical entities are of the form &#<number>; where <number> is
some character code in Unicode. Also, all names are case sensitive (SGML allows one to specify
if case is relevant). There are plenty of these small changes, but generally one does not need to
worry about them unless there is a constant need to do transformations between SGML and XML.

XML introduced the concept of ZHOO�IRUPHGQHVV. All XML documents must be well-formed. A
well-formed XML document has all its open and close tags, elements nest properly (i.e. a situa-
tion like <a> is prohibited) and it does not need to have a DTD. A YDOLG docu-
ment is naturally well-formed, but it must also contain a DTD and it must conform to the DTD.
Parsers that check only well-formedness are pretty easy to write, and they can work a lot faster
and with less resources than validating parsers. See Example 6 and Example 7 for samples of
well-formed and valid XML instances, respectively.

([DPSOH����$�:HOO�IRUPHG�;0/�'RFXPHQW�

<?xml version=’1.0’?>

<memo>

<title>This is a title</title>

<para>I have to remember this</para>

</memo>

([DPSOH����$�9DOLG�;0/�'RFXPHQW�

<?xml version=’1.0’?>

<!DOCTYPE memo [

<!ELEMENT memo (title,para+)>

<!ELEMENT title (#PCDATA)>

26

<!ELEMENT para (#PCDATA)>

]>

<memo>

<title>This is a title</title>

<para>I have to remember this</para>

</memo>

It is simple to delinate where SGML is and is not an appropriate technology option but it is less
obvious with XML. Because well-formed documents are easy to process and do not require strict
adherence to any predefined DTD it could be argued that XML could be used everywhere.

XML itself is really a clear-cut standard as standards go (strictly speaking it is not a standard per
se, but a World Wide Web Consortium Recommendation which is effectively an Internet stan-
dard). But XML does not exist in a vacuum, and there are many related Recommendations in the
works or already finished that are usually needed when working with it. The Namespaces in
XML [W3C99a] Recommendation is a sort of an effort to simplify the architectural forms concept
from the HyTime standard (see Section 3.5). The XML Linking and Pointer activity tries to create
a simple but powerful linking and addressing model for XML (again, HyTime is the ultimate sys-
tem but it is too complex). The Extensible Style Language (XSL) [W3C99b] is an effort to create
a powerful page description and transformation language (based on XML) that can be used to
transform XML documents to screen and paper representations, for example. And there are still
others.

Having mentioned XSL, it must be said that there are existing standards and Recommendations
that do what XSL is trying to achieve. DSSSL (see Section 3.5) obviously is up to the task, but it
is too complex. Cascading Style Sheets (CSS) [W3C96] can do a lot, but CSS has very limited
transformation capabilities. For example, it is not possible to create a table of contents with a CSS
stylesheet. Interactive documents will always need scripting. The scripting language could be for
example JavaScript, or the standardized version ECMAScript [ISO98b]. There has been a heated

debate on the need for XSL1.

����+\7LPH

HyTime [ISO97] is the abbreviation for Hypermedia/Time-based Structuring Language. In an
effort to develop a standard representation for music with SGML it was noted that SGML alone
was not up to the task. Also many things that deal with music can be used with other time-depen-
dant systems, such as multimedia. Hypermedia poses some difficult challenges to the software
that must operate on it [Kim98], like how to create non-character content, how to schedule and
render real-time content, how to locate specific objects and parts of objects within the data. So in
order to cater for a variety of different needs, HyTime was first developed. The first version of
HyTime appeared in 1994. The current version was published in 1997.

1. See the discussion forum at XML.COM, http://www.xml.com/.

27

������+\SHUPHGLD�&RQFHSWV�DQG�'LPHQVLRQV

Some of the basic concepts of hypermedia are not new. There have been cross-references in books
even before print was invented. Vannevar Bush wrote the first paper describing an automated
hypertext system [Bus45]. The term hypermedia is rather new, however, as it has only emerged in
the recent decades. It is worth mentioning that the term K\SHUWH[W coined by Ted Nelson in the
1960s and discussed in [Nel82] really means K\SHUPHGLD in its original sense.

It is possible to draw a dimension diagram for hypermedia (see Figure 5, redrawn from [Kim98]).
HyTime is most applicable for the top two quadrants of the diagram ([New91] and [Kim98]).
Still, it has been claimed that HyTime’s scope of applicability is comprehensive enough to
embrace all possible text processing applications ([New91] and [DeR94]). Therefore all docu-

ments can be represented with HyTime1. This sounds like a ridiculous statement, but with a bit
closer look it is not that difficult to image that this could be true.

)LJXUH����'LPHQVLRQV�RI�+\SHUPHGLD�

������+\7LPH�+\SHUGRFXPHQWV

Every HyTime K\SHUGRFXPHQW has a so called KXE�GRFXPHQW, which is an SGML document
with some additional HyTime constructs. The additional HyTime constructs can refer to external
entities, like video sequences. If there is a video sequence we would like to represent with
HyTime we do not actually need to convert it to SGML, but instead there must be a process that
can understand the video format, and provide a JURYH representation of it to the HyTime engine
(all HyTime addressing and linking happens in the grove).

A grove is a formal construct from the HyTime standard. A grove is roughly a parse tree and some
additional information. If we would like to view the video with a program that has an embedded

1. “Resistance is futile, you will be assimilated.“

Full Hypertext

Text
Only

Text and
Graphics

Static
Multimedia
Presentations

Multimedia
EncyclopediasOnline Books

Online
Help

Virtual
Reality

Multimedia Content

In
te

ra
ct

iv
ity

28

HyTime engine, we would open the hub-document, which would let the HyTime engine launch
the actual viewer for the video. The grove constructor would be needed if we would need to point
to some frame in the video sequence, for example.

HyTime is a large standard, but, fortunately, highly modular. This means that one can implement
very small subsets of it. One such module from the standard is the HyTime hyperlink module. The
HyTime hyperlinking mechanism is one of the most widely used features of HyTime as it is rela-
tively easy to implement on top of existing SGML systems and it is really useful. With SGML one
can only link from an element to other uniquely identified element(s) in the same document
instance. HyTime’s links do not have that kind of restrictions.

������+\7LPH�0DUNXS

Arguably the most simple HyTime link construct is the FRQWH[WXDO�OLQN (clink). It is a deceptively
simple yet powerful concept. clink can link to both internal locations and to external documents
and locations in them. The OLQN� LQLWLDWLQJ� DQFKRU is the link itself, i.e. it happens in context
(hence the name contextual link). Typically the link begins as an SGML ID/IDREF, although
other forms are possible. The target ID is often just a pseudo-target in the same document to sat-
isfy standard SGML parsers. HyTime engines know to look more closely at the pseudo-target to
see if it is a part of a location ladder or path that eventually points out the real target.

Example 8 show how clinks could appear in SGML markup. Most of the DTD has been omit-
ted for brevity. The ellipsis (...) marks deleted sections.

The xref element is a clink. HyTime does not require the use of specific element names. The
specific HyTime constructs are indicated by attributes. By default, the attribute name is HyTime.
The xref element has a required linkend attribute of type IDREF (meaning it must point to a
unique identifier in this document). The HyTime attribute has a fixed default value. A fixed value
means that there is no other legal values for this attribute other than the one specified in the
attribute definition.

The nameloc and nmlist elements are defined so that they conform to similarly named con-
structs in the HyTime standard. Their purpose is to enable linking to other named locations in this
document or other documents. Example 8 shows how to link to other documents. The nameloc
element provides a target for the xref IDREF linkend so that SGML parsers will find this docu-
ment valid. The real target, however, is something else as specified by the HyTime standard.

([DPSOH����+\7LPH�FOLQNV�

<!DOCTYPE hydoc PUBLIC “-//Heikki Toivonen//DTD My HyTime Doc//EN“ [

...

<!ATTLIST xref

linkend IDREF #REQUIRED

HyTime NAME #FIXED “clink“>

...

29

<!ATTLIST nameloc

id ID #REQUIRED

HyTime NAME #FIXED “nameloc“>

...

<!ATTLIST nmlist

docorsub ENTITY #IMPLIED

nametype (element|element) “element“

HyTime NAME #FIXED “nmlist“>

<!ENTITY otherdoc SYSTEM “otherdoc.sgm“ CDATA SGML>

]>

<hydoc id=”id-1”>

<title>My Hydoc</title>

<para>Link to ID <xref linkend=”id-1”>“id-1”</xref>.</para>

<para>Link to <xref linkend=”loc-1”>“otherdoc.sgm“</xref>.<para>

<para>Link to <xref linkend=”loc2”>“id-251” in “otherdoc.sgm”

</xref>.</para>

<hylinks>

<nameloc id=”loc-1”>

<nmlist nametype=”entity”>otherdoc</nmlist>

</nameloc>

<nameloc id=”loc-2”>

<nmlist docorsub=”otherdoc” nametype=”element”>id-251</nmlist>

</nameloc>

</hylinks>

</hydoc>

������$UFKLWHFWXUDO�)RUPV

Another frequently used construct from the HyTime standard is the DUFKLWHFWXUDO�IRUP, or PHWD�
'7'. Meta-DTDs bring object oriented thinking to document management, i.e. document types
can inherit certain properties from their ancestor DTDs. In this regard they act a bit like base
classes or supertypes in object oriented programming languages [Kim97]. In fact, Example 8 uses
the HyTime meta-DTD, from which the clink, nameloc and nmlist forms are instantiated.

The architectural forms facility is a great help in document management and interchange. With
vanilla SGML an author is stuck with a given DTD and can not enhance it for his own special
needs (or if he does enhance the DTD, his documents may become unusable to other users of the
original DTD). Architectural forms allow the authors to enhance the document structure to better
suit their needs while still enabling document interchange. The designers of the meta-DTDs can
also specify certain constraints on the derived DTDs.

Document Style Semantics and Specification Language (DSSSL) [ISO96] is very closely related
to HyTime. They share the same grove model of the document. DSSSL is generally recognized as

30

a page layout language, but because it really is a programming language, it enables very sophisti-
cated modification of SGML/HyTime documents. Its query language can be used in the query
location address form of HyTime.

HyTime has gained the reputation of being a difficult and expensive technology. While it is true
that the standard in its entirety is intimidating many bits and pieces are relatively easy to under-
stand and implement, and thus use. There are not too many resources for learning HyTime, but
one of the best is [Kim98].

����5HODWHG�6WDQGDUGV

SGML is not the only standard for structured documents. Open Document Architecture
(ODA) [ISO89] addresses the same problems as SGML. ODA is somewhat more complicated,
which is probably why it has not been as widely accepted as SGML. The main difference between
ODA and SGML is that ODA can also be used to store the layout information of documents.
Originally ODA was called Office Document Architecture, but this was later changed to Open
Document Architecture.

Virtual Reality Markup Language (VRML) [ISO98a] has been developed to describe virtual real-
ity spaces and objects. There are also structural standards for music, chemical patterns, product
information and exchange and so on. The simplicity of XML attracts many of these other stan-
dards, and there are investigations going on to convert them to XML or at least provide a mapping
to XML structures.

Most documents contain illustrations. Effectively managing images is at least as important as
managing text. Therefore it is no wonder that there are several international and de facto industry
standards available for images. It has often being said that the Computer Graphics
Metafile (CGM) [ISO92b] standard is the equivalent of SGML for 2-dimensional images. The
drawings in this document are mostly in CGM format.

&KDSWHU���

'DWDEDVHV
We can still remember the golden days before Heisenberg, who showed humans the walls enclosing our pre-
destined arguments. The lives within me find this amusing. Knowledge, you see, has no uses without purpose,
but purpose is what builds enclosing walls.

Frank Herbert, &KLOGUHQ�RI�'XQH

Any collection of data can be considered to form some sort of a data repository or database. Now-
adays the word database is almost exclusively reserved for an electronic collection of data that is
managed by a very special computer program, the database management system (DBMS). The
technical sources for this chapter were mostly [Sun81], [Mic92], [Loo98], [Whi99].

����&RPPRQ�'DWDEDVH�3URSHUWLHV

Databases have been around for a long time, even computerized databases have been in existence
for decades now. They serve as organized information repositories.

Databases are scalable. They are usable as small, single person databases. A listing of one’s per-
sonal video collection could be one example of such a micro-database. Largest existing databases
easily exceed a petabyte in size. This does not mean that any database software can be used to

32

manage a database of arbitrary size.

The most important and useful property of databases is the ability to perform queries on the data
efficiently, filtering out unwanted information. Queries typically execute very fast. Of course
these properties are a must in a large database, otherwise it would be unusable. Databases can also
save space by eliminating redundant information, and there are techniques to help validate the
data in databases.

Typically databases are used in situations where the database structure does not change, but the
information in the database can change rapidly. A common example is a bank’s customer database
as the information describing a customer, or the schema, is not likely to change over many years.
Still a person may make several withdrawals and deposits in a single day, all of which must be
reflected in the database.

The current mainstream database technology is divided into relational and object-oriented data-

base models (discounting models that are obsolete or nearly so)1. There are some databases on the
market that are referred to as K\EULG databases. That means they are not strictly relational nor
object-oriented. A typical hybrid database evolves from a pure relational database when a variable
length text field is introduced (possibly with grammar check, for example by an SGML
parser) [Elo95].

Before going futher it should be noted that the term database used in this paper actually means the
database management system (DBMS) and the data as one entity. Most references clearly separate
these concepts and only talk about a database when the data is meant.

����5HODWLRQDO�'DWDEDVH�0RGHO

The relational database model is based on mathematics. Besides making it elegant by design, it
has resulted in practical benefits. For example, certain things can be proven which helps in valida-
tion and optimization. This section will not even try to define the concepts as they really should be
defined from a mathematician’s point of view, but rather from the view of the every day user and
software designer who only needs to use databases, not design them. Moreover, the emphasis is
on data retrieval, although databases handle simultaneous updates to data as well. On a file system
simultaneous updates easily corrupt the data.

The end of the section lists some references that will explain the relational model more deeply and
with mathematics.

It should be noted that most “relational databases” on the market are in fact not fully relational.
Dr. Edgar Codd’s (“the Father of the Relational Database”) work in the 1970’s and 1980’s resulted
in 13 rules that a relational database should fulfill. When the relational concept gained accep-

1. Discounting also the World Wide Web, even though it is a sort of a networked database. While WWW
fills the basics of a database definition, it lacks for example an effective querying mechanism.

33

tance, the database vendors quickly implemented some properties from the relational theory and
happily sold their products as relational databases. However, this does not imply that the data-
bases are not well suited for their job. And in fact, the solutions presented in this paper demand
very little from the databases used.

������%DVLF�%XLOGLQJ�%ORFNV

In the relational model, data concerning a given entity is collected in a table. Take, for example, a
(simplified) database describing companies, products and information about the relationships
between the companies and the products they make. The Figure 6 shows a relational database
with three tables: Company, Product and Manufactures. Tables consist of columns. For
example the Company table consists of id, name and address columns. Rows in a table con-
tain the actual data in the table, while the tables and columns (or their names) themselves are basi-
cally metadata.

)LJXUH����5HODWLRQDO�'DWDEDVH�0RGHO�

In typical database implementations some of the columns in a table form a so called SULPDU\�NH\,
which must be unique for each row in a table (the relational database theory does not require this,
but this makes it easier to optimize the database performance). In the example the id column of
the Company table is the primary key. Relationships between tables can be described as links
between primary and IRUHLJQ�NH\ columns. A foreign key in a table “points to” a primary key of
another table. The relationships between companies and products in the example are described in
the table Manufactures. So to see what products can be found from a company one must first
follow the link from the Company table to Manufactures and from there to Product. In this
example the company Berg manufactures only Bolts.

Relationships can be RQH�WR�RQH, RQH�WR�PDQ\ or PDQ\�WR�PDQ\. A one-to-one relation means

id

id

name

name address

Company

P2
P1

F2
F1

Product

Berg
AB Spik

Town
City

Screw
Bolt

Manufactures

fid pid

F2
F1 P2

P1

F2 P2

34

that for each row in the left-hand side table of the relationship there exists a maximum of one row
in the right-hand side table. A one-to-many relationship is simply a relation where there can be
multiple “hits” in the right-hand table. Many-to-many relationships are created with helper tables.
For example, the Manufactures table in Figure 6 is a helper table. There is a one-to-many
relationship from table Company to it, and there is a one-to-many relationship from table Prod-
uct to it. One-to-one relationships are rare, but the other two forms of relationships exist in most
databases.

In diagrammatic models of databases relationships between tables are sometimes indicated by
lines drawn between them (entity relationship or ER diagrams). The type of relationship is usually
indicated with numbers and other symbols. For example, one-to-many relationship could be indi-
cated by a “1” on the left-hand side and by “n”, “ ∞” or “1..*” on the right-hand side. See Figure
18 in Section 6.3 for an example.

Relational database can also be thought to consist of different levels, or components. On the low-
est level there is the physical storage level. The physical representation of databases is a science in
itself. Usually binary formats are used, but above the binary level the database can be represented
as sorted or unsorted indices, various trees and other constructs. The logical level of a relational
database is the table level, or in a broader sense the query level. The upper level is the reports, or
user-interface level. Each level uses the levels beneath it to carry out its purpose. For example, a
report has some knows how information should be shown and it can contain complex calculations
on the data. Reports use queries to fetch the data. Eventually queries access the physical data on a
storage device. Finally there can be the management system for all of the “components”. A typi-
cal off-the-shelf database like Microsoft Access comes with all of these.

Relational database systems have methods that try to ensure that the data in the database will
always be correct. For example it can be made impossible to remove a company from the database
without removing the products it manufactures (and are not manufactured by any other company).
This kind of control can be achieved by checking the primary and foreign keys, and making sure
that if a key in a table is deleted it is not referenced anywhere else.

������1RUPDOL]DWLRQ

It is possible to design a database badly. Bad design means that the database contains redundant
information, there are things that cannot be queried from it and so on. The process that tries to
avoid these kinds of problems is called QRUPDOL]DWLRQ. Normalization is done in steps. We say
that a table is in ILUVW�QRUPDO�IRUP (1NF) if all of the data values are atomic values. Achieving
1NF is mainly common sense, and modern RDBMS make it difficult to create tables that are not
in 1NF [Whi99].

A table is in VHFRQG�QRUPDO�IRUP (2NF) if it is already in 1NF and all non-key fields (columns)
are fully functionally dependent on the primary key. As an example of functional dependency,
consider the volume of a box, which can be calculated from its dimensions. If the dimensions are
stored in the table, then the volume should not be stored because it is functionally dependent on
the dimensions. Stepping from a lower normal form to a higher normal form is carried out by

35

splitting the table.

The WKLUG�QRUPDO�IRUP (3NF) is achieved when the table is already in the 2NF and all non-key
fields are non-transiently dependent on the primary key. This simply means that any non-key field
should depend solely on the primary key. The Company table in Figure 6 would be an example of
this as long as the addressID column is always dependent on the address column. There are
at least three other levels of normal form, but generally a database in the 3NF is considered good
enough [Whi99]. The database in Figure 6 is at least in the 3NF because all the conditions are ful-
filled.

������4XHULHV�$QG�%H\RQG

To get data out of multiple tables or restrict what comes out of a single table, a query is needed.
Actually SQL, the Structured Query Language [ISO92a], can be used to create and alter the data-
base structure as well as inserting and modifying information. Consider the example in Figure 6.
One might want to know what products the company AB Spik has in its catalog. This could be
carried out with the SQL commands presented in Example 9.

([DPSOH����64/�6(/(&7�6WDWHPHQW�

SELECT
Product.name
FROM
Company, Manufactures, Product
WHERE
Company.name = “AB Spik”
AND Company.id = Manufactures.fid
AND Manufactures.pid = Product.id;

In English, the above query says:

This query operates on tables Company, Manufactures and Product . Find the id of the company
whose name is AB Spik . Next, use the found value to locate the rows in the Manufactures table that
have that value in the fid column. Finally, for all the rows found in Manufactures , find the rows in the
Product table that match the id column values with the pid column values in the Manufactures table,
and show their names.

Saying it aloud is quite a mouthful, but it really is quite simple. Initially selecting the three tables
produces a result set that has all the possible combinations available in the database. The WHERE
rules further restrict the result set, because the AND keyword means that all of the rules must be
true simultaneously. From the result set a single column is selected for output.

A nice tutorial on SQL is [Hof99]. Recommended reading about relational databases in general
are [Whi99] and [Yar99], the latter because it has examples using a freeware relational database.
However, the accuracy of information is not always as good as it should be. Finally, [Loi99] is a
book for the database freak. It goes into the mathematics of relational databases.

36

����2WKHU�'DWDEDVH�0RGHOV

Relational databases are not the only databases on the market. Object-oriented databases are
steadily gaining ground. Evolution has nearly discarded some database technologies, while
research for new and better technologies goes on.

������2EMHFW�2ULHQWHG�'DWDEDVHV

Objects in an object-oriented (OO) database may have data attributes and other objects. In fact,
one definition of an object oriented database is a “collection of persistent objects” (that is, objects
that live between invocations of a program) [Eck95]. This could be depicted as shown in Figure 7.
The outer ellipse describes the database. The database holds objects like a circle and a box. There
are some objects that in turn consist of other objects, like the ellipse on the left that consists of two
sub-objects. The figure is just an abstract visualization of an OO database and does not imply that
data is stored as images.

Contrary to popular beliefs, there are excellent object-oriented databases available. OO databases
are being used, and they can offer easier handling of data and better performance, to name just a
couple of benefits over relational databases [Wak99]. OO databases are naturally suitable for stor-
ing structured documents ([Paq92], [Böh94] and [Bal97]), which is also proven by the available

SGML/XML databases using OO solutions (for example, Astoria1 and POET Content manage-

ment Suite2).

)LJXUH����2EMHFW�2ULHQWHG�'DWDEDVH�

OO databases also have the benefit that developers are not faced with “impedance mismatch”.
Impedance mismatch is a term used to describe the problems inherent in using SQL language

1. Astoria is a product of Chrystal Software, a division of Xerox.
2. POET Content Management Suite is a product of POET Software.

37

from within an OO language like C++ and binding SQL’s structural constructs to classes and
objects. Using objects stored in an OO database within an OO programming language can work
with exactly the same rules and syntax as working with any other object.

One serious handicap with OO databases is that they are not based on such a rich mathematical
foundation as the relational model. This makes it more difficult to optimize them and present stan-
dardized solutions. It remains to be seen if pure OO databases will enter the mainstream. One way
to get there might be to build an OO database on top of a relational database. This has been dis-
cussed in [Loo98] and [Loi99].

������0RUH�([RWLF�'DWDEDVH�0RGHOV

Relational and object oriented databases are certainly not the only database technologies out
there. Other technologies have been in use before them, and new technologies are being invented.

Hybrid databases were mentioned earlier. A hybrid database is a hybrid between relational and
object oriented databases. To make it clear that the techniques involved are relational and object
oriented, these databases are often referred to as object-relational databases. It has been proposed
that SQL be further developed to be more compatible with object-relational databases. It has been
realized that pure relational databases are lacking in several important areas, for example in han-
dling structural data [Rei98].

Hierarchical database technology (see Figure 8 for an illustration) has lost the technology war to
the newer technologies. On the other hand, recent discussion in some XML forums indicates that
it might again prove to be a viable solution in some specific cases. The network database model
(see Figure 9) is almost unheard of except with old mainframe computers. References [Sun81]
and [Loi99] discuss hierarchical and network models in more detail.

A brief visualization of the differences between relational, hierarchical and network models can
be seen from Figure 6, Figure 8 and Figure 9 (modified samples from [Sun81]). The figures them-
selves do not explain the different database models, they just show that different ways to represent
the same information exist. The sample database has information about companies and products,
and describes what company manufactures a given product.

38

)LJXUH����+LHUDUFKLFDO�'DWDEDVH�0RGHO�

)LJXUH����1HWZRUN�'DWDEDVH�0RGHO�

F1 Berg Town

BoltP2

F2 AB Spik City

ScrewP1

BoltP2

F1 Berg Town
ScrewP1

F2 AB Spik City
BoltP2

P2F1

P1F2

P2F2

&KDSWHU���

0DQDJLQJ�'RFXPHQWV�ZLWK�
'DWDEDVHV

You will learn the integrated communication methods as you complete the next step in your mentat education.
This is a gestalten function which will overlay data paths in your awareness, resolving complexities and
masses of input from the mentat index-catalogue techniques which you have already mastered. Your initial
problem will be the breaking tension arising from the divergent assembly of minutiae/data on specialized sub-
jects. Be warned. Without mentat overlay integration, you can be immersed in the Babel Problem, which is
the label we give to the omnipresent dangers of achieving wrong combinations from accurate information.

Frank Herbert, &KLOGUHQ�RI�'XQH

There are several ways to manage documents with databases. The most straight-forward way is to
store the documents themselves into databases. That can be problematic, though, if the documents
are large and the system can not split the documents into smaller parts. The other easy approach is
to save documents normally, but have databases manage references to those documents. This the-
sis is mostly concerned with the latter method. The primary sources for this chapter
are [Tra95], [Pel97a], [Ryt97] and [Som96].

40

����'LIIHUHQFHV�$QG�6LPLODULWLHV�%HWZHHQ�
'DWDEDVHV�$QG�6WUXFWXUHG�'RFXPHQWV

Documents contain information. It is important to be able to effectively manage that information.
Databases were created to effectively manage small information blocks, like numbers, but they
can also be used to manage whole documents or parts of documents. Depending on the database
technology, the actual way of managing data differs, but the expected functionality is pretty much
the same. It must be easy to find the information, restrict access to it, enable information reuse,
keep track of changes and so on.

������6WRULQJ�$QG�5HWULHYLQJ�&RPSOHWH�6*0/�'RFXPHQWV�²�
$�&KDOOHQJH�WR�'DWDEDVHV

It is possible to break an SGML document into relations and tables and therefore it is possible to
“insert” SGML documents into relational databases. However, the result is probably not what one
usually calls a document. With special programs it is of course possible to view the relational rep-
resentation in a standard SGML document way. This approach is sometimes used with very large
SGML documents that have to be managed effectively.

It is relatively easy to understand how SGML documents can be saved in OO databases. Each ele-
ment in an SGML document is an object. Container objects are formed of several smaller objects.
It is no wonder then that there are several OO databases specialized in SGML, for example Asto-
ria and POET.

Databases are very different from SGML documents. Whereas data in an SGML file resides in
sequential order as ASCII characters, databases use several different methods for storing the data
(see Section 4.2.1).

Although it would be possible to describe a database’s structure with a DTD and to display the
data as a document instance, this is not generally what is wanted. That kind of report can be easily
obtained from the database itself, even though it is not in SGML.

With relational databases, showing the contents of the database as SGML tables, possibly with
links, would require a considerable amount of work from the user in order to find the answers to
questions he or she might have in mind. On the other hand, queries can be constructed so that they
answer specific questions (see Section 4.2 and Example 9). Depending on what the retrieved data
is, it can be given a logical structure with a DTD.

Also, because databases are often huge in size, building a static SGML instance of it would take a
lot of time. Needless to say, complete databases are generally too big to fit into RAM anyway. The
way to handle this is to build the instance as a user is browsing it, thus possibly eliminating many
needless queries. Another problem is that the data in a database may be changing in a rapid suc-

41

cession, while an SGML file normally is supposed to stay valid for some time, even decades. So
to really make an SGML instance of a database one should ideally fetch only the information the
user wants to see and update the document continuously to reflect the changes in the database.

������([WUDFWLQJ�3DUWV�RI�'RFXPHQWV�IURP�'DWDEDVHV

There are two basic syntactic approaches to indicate in an SGML document instance that certain
parts of the document should be retrieved from a database. First, an entity’s system identifier
(see Section 3.3.4) can be a database query instead of a file name. The entity manager must then
be customized to retrieve the entity’s content from a database. For example, the system identifier
of the chap1 entity in Example 5 could be the SQL statement in Example 9. The resulting gener-
ated chapter could be similar to Example 10.

Another option is to attach a query to an element. The query should be executed in order to get the
element’s content. Database queries can be stored in attributes, or queries can exist elsewhere and
they can be referred to by HyTime links. The application processing an element should then use
the query to retrieve the element's content. This approach is explored more in the DTD presented
in Appendix B.

The second method looks more appealing, especially with the Second Edition of HyTime. The
simple approach here is to have an attribute that contains the query to execute. This can be
expanded to give some meaning to the attribute, i.e., tell the processing application what the
attribute value is and also make it clear that the application should process the attribute value to
get the element’s content. This can all be encoded in a standard way. This approach can be made
even more robust if the queries themselves are part of the document. Then it would be possible to
point a link to the query wherever it is needed. This way the queries can be reused and even man-
aged effectively in a central repository.

Another way to classify the how the database structure can be mapped to document structure is
through the concepts of template-driven and model-driven mappings. In a WHPSODWH�GULYHQ map-
ping the query is embedded somewhere in the document. Once executed, it will replace some part
with a template element structure where certain variables are replaced by database values. In the
PRGHO�GULYHQ mapping there is some fixed document structure that is mapped to the database
structures. For example, there could be a table element that must be mapped to a table in a rela-
tional database. The template-driven and model-driven mappings are explained in more detail
in [Bou99].

As it was pointed out earlier, blind mapping of the tables and columns of a relational database to a
plain table/column DTD would not result in a meaningful document. A container element should
be mapped to a query, and the query output columns to some display elements in the SGML DTD.
But what to do when a query returns multiple rows, as is usually the case?

A generic way would be to define a row model so that each row in a query's result set would gen-
erate a small piece of SGML tagged text, each row generating the same SGML structure but dif-
ferent element content. Let us take, for exampl,e a query that returns results in two columns, say

42

Author and Book Name. The result set contains two rows where the first row would have val-
ues Frank Herbert and Dune while the second row would have values Piers Anthony
and On a Pale Horse. It might be desirable to output the result in SGML as in Example 10.

([DPSOH�����0DUNXS�*HQHUDWHG�IURP�'DWDEDVH�

<book>
<author column="Author">Frank Herbert</author>
<title column="Book Name">Dune</title>
</book>
<book>
<author column="Author">Piers Anthony</author>
<title column="Book Name">On a Pale Horse</title>
</book>

����*HQHUDO�3XUSRVH�'DWDEDVHV

A general purpose database means here a database not designed specifically to store and manage
documents. There is a wide selection of these off-the-shelf databases available.

General purpose databases cannot really do anything smart with a large document. They must
simply save it as a single large object — if they can! The text part of a single document can
exceed 50 MB in some aircraft manuals. Not all databases can handle objects this big.

Another approach, if the database is not required or cannot save the whole document, is to save
the document on a normal file system and only store a reference to it in the database. This is easy
from the view of the database, but it is not foolproof. Someone could go and change the entry in
the database without moving the file in the file system or vice versa. An additional tool to manage
the reference in the database and the physical location of the file on the file system would be a
good idea. If the physical location of the file was hidden or inaccessible to users without the addi-
tional tool the system could be made quite safe.

If an organization is already using a relational database to manage product data (but not product
documents), it may be really simple to modify the database to make it usable as a document man-
agement system. For example, let us look at Figure 6. If there is documentation for each product,
and we would like to add information about the documents into the database, we would only need
to add one new table, called, in the example, Document. Let us assume that we only need to
know where the document is located. In that case we would need a filename column in the table.
Figure 10 shows how the database looks after this addition. Screw now has two documents asso-
ciated with it, and Bolt has a drawing. This “reference approach” is used in the system imple-
mented at Wärtsilä NSD, described in the next chapter.

43

)LJXUH�����'RFXPHQW�7DEOH�LQ�5HODWLRQDO�'DWDEDVH�

����6SHFLDOL]HG�'DWDEDVHV

Specialized database in this context means a database that is designed and implemented to store
and manage documents. They can be further divided into systems that either are or are not
designed specifically to manage structured documents.

Normal document management systems do not know that documents could contain internal struc-
ture. They just store them as blobs of data. It may be possible to specify that certain documents
belong together in a certain order, along with metadata such as who created them and when, and
when were they last accessed.

Version management systems commonly used in the software industry are also a bit like docu-
ment management systems. They are in some sense aware of the contents of the files thrown at
them, because programmers like to see the differences between different versions of files. This is
often taken a bit further to optimize space, because the system need only store the original version
of a file and the changes. This primarily makes sense with text files. Of course, products sold as
document management systems can do things like this as well.

The most interesting document databases are the ones that understand that documents can have
structure. An SGML document can be understood by its DTD and split into small objects stored
efficiently in the database. The document can be reassembled back into textual representation
when it is checked out.

A structured document database need not have any limitations as to how fine-grained the logical
objects it handles can be. The pure SGML way of achieving document reuse is by using entities,

id

name

name address

P2
P1

F2
F1

Product

Berg
AB Spik

Town
City

Screw
Bolt

Manufactures

fid pid

F2
F1 P2

P1

F2 P2

id

Document

Company

filename
id

D1
D2
D3

pid

P1
P1
P2

c:\manual.sgm
a:\desc.sgm
c:\drawing.cgm

44

but that presents some problems, as was discussed earlier (see Section 3.3.3). With a good data-
base a user can lock a single paragraph from a monstrously large manual, check it out, edit it, and
check it in without stopping other authors working on the same document.

Documents can be constructed from many different objects in the database, sharing some objects.
As with entities, updating a shared object will immediately update all the documents that use the
shared object (see Figure 11), but the system can warn the user that this is about to happen and ask
if this is really wanted. If the user does not wish to update the referring documents he can instruct
the database to make a copy of the original content. Documents may either refer to the original
shared object or the new, modified shared object.

Of course, structured document databases can also save metadata about documents such as who
created what and when. Beyond this, they are capable of taking this down to the smallest possible
logical element in the document as well. Some specialized databases also include other compo-
nents like workflow management systems which can automatically move a job from one person to

the next as soon as work phase is completed1. All this makes special purpose, structure-aware
databases superior to other solutions. The price tag may also far exceed other, inferior techniques.
The cost balance can therefore make less comprehensive solutions still attractive.

)LJXUH�����6*0/�'DWDEDVH�

1. For example Information Manager from Interleaf.

Document A Document B

Database

Change here will
automatically update
both documents

45

����:ULWLQJ�0RGXODU�'RFXPHQWV

To get the best out of a document management system where multiple authors are editing the
same document, or many documents have a lot in common with each other, it is best if parts of
documents can be developed in relative isolation. This is common enough in software develop-
ment, for example, where a problem is analyzed and different modules solve different parts of the
whole problem. Modules usually have well-defined interfaces to other modules which makes it
possible to develop the internals of the modules without knowledge of the internals of the other
modules. It would obviously be cost-effective if traditional documents could be written this way
as well, but, unfortunately, manuals are not computer programs. Differences in writing style, old
habits and so on makes this very difficult.

Authors that have spent their whole career writing documents from start to finish by themselves
are faced with the difficult transition of writing small document fragments, or micro-documents.
The term micro-document can be a bit misleading, because it means that each document fragment
describes a single component of some system, or a procedure. A micro-document for a bolt could
be very simple, while a micro-document for a fuel system could be very large.

A micro-document should both be usable independently and it should also be possible to combine
several of them into larger publications. This is difficult. Normal text cannot be detached from its
context. Each chapter, for example, has first some introductory material and ends with some lead
into the next chapter. This applies to the finer structure elements as well. Each paragraph starts
with an introduction to the paragraph, and ends so that the next paragraph logically falls into
place. If an automated document assembly process picks a piece from here and another from
there, this old way of writing documents simply does not work.

Reality imposes some constraints on how document fragments are assembled together, of course,
so writers are not left with an impossible task. For example, it could be known that every user
manual will always have a safety section near the beginning of the document which is followed
by a tools section. Also, it could be known that the documentation for some piece of equipment is
only used in a certain product and not in any others.

Practicality has something to say as well. A document must naturally be readable. If an optimal
solution would produce unreadable documents, larger blocks must be written. It may also be as
simple as deciding that some documents will not be assembled automatically.

Structural documents are the natural way to write modular documents. When an organization
decides to move into the structured document domain, there is usually a need to transform at least
some of the old documents to the new format. Besides being a rather expensive and error prone
operation, it may not be possible to split old documents into independent microdocuments at all.
The transformations involved are outside the scope of this thesis, but they are discussed in
[Tra95], for example.

46

����$GGUHVVLQJ�([WHUQDO�5HVRXUFHV

Managing blocks of documentation in SGML format is generally not enough. Most documents
contain figures, some of which may need to be automatically generated at the time of printing.
Static images (or video/audio formats) can be managed almost exactly like text documents. The
difference is that they generally will be saved as large blobs of data and not broken down into
smaller parts. Because it is more difficult to search images for certain topics, keyword and other
metadata information is often attached to the binary format files when they are saved into a repos-
itory. For dynamic figures and tables there must be utility processes that can generate the data on
demand.

Most technical documents include cross-references. SGML’s limited abilities can be enhanced
with other standards like HyTime, but that does not help in the management of cross-references.
For example, how is an author supposed to make a cross-reference to a section that is the respon-
sibility of another writer who has not yet begun his work? And what happens if document assem-
bly process selects a piece of text for insertion into a publication and there is a cross-reference to
another piece of text that is not included in the publication? Is it possible to automatically check
that all cross-references point to valid targets?

The problems with link management warrants a thesis of its own. And the sad answer is that there
is no perfect solution. Some rather simple techniques can be used to automate some tasks. Let’s
take a closer look at the three questions we have posed above.

It turns out the easiest problem to solve is linking to content that does not yet exist. This can be
accomplished by creating a document that contains all the targets of links from the main docu-
ment. These targets themselves redirect the link to its actual target (see Figure 12). This makes it
possible for the first author to finish his part of the document before other parts even exist. Of
course there must be some kind of an overview of the completed document so that it is possible to
insert cross-references pointing to unfinished sections. During authoring, it does not really matter
if the actual target does not yet exist because the intermediate document contains the information
that some parts are missing and must be created before publication.

)LJXUH�����$XWKRULQJ�ZLWK�DQ�,QWHUPHGLDWH�/LQN�'RFXPHQW�

Authored
Document

Intermediate
Link Target
Document

Doc
X

Doc
Y

47

The next problem is more difficult. If an automated document assembly process drops cross-refer-
ence targets off the publication, something must be done with the links or the document could
become invalid or unusable. The simple approach is to use the intermediate link target file in this
case as well. Links that point to non-existing targets simply point to information that explains that
the link target is missing and where the missing part might be found. If the target is known to be in
some other publication, the link can be replaced with a bibliographic reference to the other publi-
cation. In some simple cases cross-references can be deleted.

The most difficult problem is making sure that links point to where they are supposed to point.
Links that point to relative locations may be confused by changing the document structure. For
example, if a link points to the third paragraph of this section, deleting the current first paragraph
changes the link target. The link might still be valid, or it might not. Although automatic pro-
cesses can be created to check that every link points to something, a human is needed to make
sure that the relationship is real and correct. There is no artificial intelligence system yet that
could follow links and read or otherwise experience what is at the other end and reason out if the
link was valid. It seems absurd that highly paid professionals sit for days at computer terminals
clicking links and seeing where they lead to. But there is just no better way.

Problems and solutions in linking have been explored in [Kim98] and in summary format
in [Ang97].

����&OLHQW�6HUYHU�$UFKLWHFWXUH

In a document management system, as described in this paper, there is a database and possibly
some kind of file server. These are server-level components. The clients in a typical document
management system will include editors or other data producers and viewer and publishing appli-
cations. A sample architecture is presented in Figure 13.

The client-server architecture model is very common way to design system architectures. It is a
distributed system model that scales well from the needs of a single user to gigantic proportions.
For example, the world wide web is based on the client-server model where clients (browsers)
talk to web servers.

The architecture consists of three major components: server, client and network. The network
component is optional. The server and client need to communicate with a predefined protocol.
Changing the protocol at one end requires changes at the other end. Clients will also need to find
the servers they are interested in.

The processing of information can occur centrally at the server, or the work can be divided
between the server and clients. Generally it is better to have the server doing the bulk of the work
because it is easier to maintain a few servers than several clients. However, as the number of cli-
ents increases, the server capacity and, in all likelyhood, the network capacity will need to be
updated. The capacity of a single server can be improved by replacing it with a cluster of servers.
The client continues to communicate with the cluster as though it were a single server. Inside the

48

cluster the work load is balanced between different computers. This also improves fault tolerance,
because failure in one computer does not render the cluster unusable. Using multiple servers,
either in a cluster or more indepedently presents the problem that whenever data changes at one
server it may need to pass this information along to the other servers.

)LJXUH�����&OLHQW�6HUYHU�$UFKLWHFWXUH�IRU�'RFXPHQW�0DQDJHPHQW�6\VWHP�

����%DFNJURXQG�6XPPDU\

This and the previous chapters have built the background knowledge needed to understand the
practical part of this thesis. Product management, structured documents and databases have been
explained with their strengths, weaknesses and practical considerations. This chapter in particular
has shown what is involved in product document management when it is done with structured
documents and databases, emphasis on relational database technology.

The following chapters introduce a real life product document management system using rela-
tional databases and SGML to store and manage product documentation. The system was imple-
mented at Wärtsilä NSD by Citec Engineering Oy. The implementation does not use all of the
features presented in this and previous chapters, but all of the features have been considered at
some point. Other, similar systems have been described in [Tra95] and [Loo98]. The former
briefly describes an SGML document management system using relational databases and the lat-

ter an image database implemented with the help of object-oriented databases.

Editor Editor Viewer Publisher

Network

Database File
Server

&KDSWHU���

3URGXFW�,QIRUPDWLRQ�0DQDJH�
PHQW�3URMHFW�DW�:lUWVLOl�16'�
3RZHU�3ODQWV

The Duncans sometimes ask if I understand the exotic ideas of our past? And if I understand them, why can’t
I explain them? Knowledge, the Duncans believe, resides only in particulars. I try to tell them that all words
are plastic. Word images begin to distort in the instant of utterance. Ideas embedded in a language require that
particular language for expression. This is the very essence of the meaning within the word exotic. See how it
begins to distort? Translation squirms in the presence of the exotic. The Galach which I speak here imposes
itself. It is an outside frame of reference, a particular system. Dangers lurk in all systems. Systems incorporate
the unexamined beliefs of their creators. Adopt a system, accept its beliefs, and you help strengthen the resis-
tance to change. Does it serve any purpose for me to tell the Duncans that there are no languages for some
things? Ahhhh! But the Duncans believe that all languages are mine.

Frank Herbert, *RG�(PSHURU�RI�'XQH

Wärtsilä NSD (former Wärtsilä Diesel) is a Finnish engineering group with global operations. It is
the leading supplier of power solutions for both land and sea. The gas and oil-fired power plant
solutions range from 1 MW to 400 MW and are used for base load, co-generation, load manage-
ment and gas compressor applications. The deliveries include turnkey construction and long term
maintenance and operation.

50

Wärtsilä NSD Power Plants has about 300 active subcontractors, and has had over 8,000 different
suppliers since 1982 [Pel97a]. Those active subcontractors are involved in over 100 power plant
projects a year. These subcontractors are required to deliver to Wärtsilä documentation along with
their products. The many different systems utilized by the subcontractors led to problems at Wärt-
silä, and it was determined that imposing documentation standards on subcontractors would alle-
viate those problems. The Product Information Management (PIM) project was started to sort out
the different problems and implement a solution. PIM was started out in 1995, while the majority
of the work in the project was done during 1996 and 1997.

This chapter describes the overall PIM project and the project phases. The next two chapters
describe two software products developed as part of the project in more detail. The author devel-
oped the second tool (see Chapter 8) as the practical programming work in this thesis.

����$QDO\VLV�3RLQWHG�WR�6*0/�$QG�5HODWLRQDO�
'DWDEDVHV

It was determined that the different file format problems could be solved with SGML, so it was
decided that all the subcontractors should supply the textual information in SGML. At that time
SGML was still new in Finland: it was a rather radical solution for the time. The annual SGML
Finland conferences had not even started yet, the first conference being held in 1996.

Wärtsilä was using Oracle relational databases internally, as were many of its larger subcontrac-
tors. Microsoft’s Open Database Connectivity (ODBC) [Mic92] technology provided a strong
reason to continue to favor relational technology as it allows applications to communicate with
any ODBC-enabled database. SGML databases at the time were very expensive and not suitable
for Wärtsilä’s needs because the subcontractors were creating the documentation and they needed
the document management system as well. Moreover, the PIM system was to store traditional
product data in addition to being a document management system. It was seen that a new database
schema would be needed to best utilize the system.

Content production was the next challenge, because most subcontractors were not using SGML
internally. A survey was conducted among the subcontractors, which showed that the majority
were using Microsoft products. To reduce the costs for subcontractors, and to make it easier for
them to accept the movement to structured documents, a custom SGML authoring tool built
around the Microsoft Word program was seen as the solution. The users would still be using the
familiar Word program, there would just be new buttons and menu items. The authoring tool
could be used to write SGML documents and at the same time, keep the document database up-to-
date, and edit some database fields directly.

The final piece was the viewing and publishing tools. There were no good and cheap SGML
viewers, not to mention specialized publishing packages, available and this meant that they would
need to be created. In addition to being able to view and format SGML documents for display and

51

printing, the programs would need to be able to communicate with the document repository to
assemble larger works from the stored microdocuments.

����5HTXLUHPHQWV�$QG�6SHFLILFDWLRQ

The PIM system requirements were loosely defined. Because the basic problem was that docu-
ments could not be produced in time, the main goal was to speed up the documentation processes.
The use of SGML was seen as critical aspect to achieve this. For example, the authors would not
need to spend time specifying styles, all necessary parts of documents would be created in the
expected order and document assembly could be largely automated. It would also be easier to
reuse information. The added benefit would, of course, be that document quality would improve.

Documentation is created at the same time as the new equipment it documents is manufactured.
Occasionally snapshots of the current documentation are requested. It was expected that it would
be easier to provide snapshots with the new system, and locate pieces of documentation that were
not yet finished.

When Wärtsilä delivers a power plant, dozens — maybe hundreds of thick binder manuals are
shipped to the customer. This takes a lot of space, is difficult to transport and is often difficult to
get through customs procedures in several countries. Changes in documents can also require a lot
of time to actually end up at the customer’s site. It was hoped that eventually paper manuals could
be abandoned. Only CD-ROMs carrying the SGML files would have to be shipped to customers,
and changes could either be shipped with more CD-ROMs or email.

SGML is a neutral data format in that it does not specify how it should be formatted, or even on
what display system it should be displayed. It does not even need to be displayed at all, but could
be read, or only manipulated by computer programs. This neutrality was also seen as important by
Wärtsilä, because they could produce information in various formats generated from a central
SGML source.

Software specifications were written first for the editor and database parts of the system, as well
as for the plain SGML viewer program that would be used as the basis for the publishing tool. It
could be argued that the specifications were no more than software definitions because they did
not go into great detail about how the system should be implemented. For example, the docu-
ments stated that relational databases were to be used with the Open Database Connectivity inter-
face, but the documents did not describe many of the dialogs that would be presented to the user
nor were there detailed speed or memory usage requirements. The documents were mostly func-
tional descriptions approved by the customer (Wärtsilä).

The natural development process for this project turned out to be evolutionary development. It
was exploratory programming in the sense that the developers had to work with Wärtsilä to find
out what the final system should be because of the loose definitions. It was exploratory program-
ming also because the developers had to learn how to use some of the system components.

52

�����'HVLJQ�DQG�$UFKLWHFWUXUH

The analysis phase had identified the key components in the PIM system. Thus the design process
for the overall architecture and system data structrure design was relatively straightforward.

������$UFKLWHFWXUDO�'HVLJQ

The client-server model architecture was the natural choice. There is a server that hosts the rela-
tional database. The server also acts as a file server. The WNS Author Tool (described in Chapter
7) is used to create content and is one kind of client application. The publishing tool (see Chapter
8) is another client application. It is used to publish different information products (and “assemble
products”) from the data repository managed at the server. The server and different clients could
be located on the same computer. In fact, subcontractors would almost certainly have a mini-
server sitting in their PCs. The mini-server would have only a part of the information contained in
the main server located at Wärtsilä.

The overall system architecture can be seen in Figure 15 (see a reduced view in Figure 14). Cre-
ation of Content represents the WNS Author Tool, Document Management System is the server
and Product Assembly and Formatting Application is the publishing tool (Multidoc Pro Database
Publisher) that was developed as the practical work for this thesis by the author.

There was never any question as to the database technology to use. Wärtsilä had all the product
data in an Oracle (relational) database. The system was to be built around it. However, because
the relational database stores only references to files the reference could be to an SGML docu-
ment held in a special purpose SGML database.

The subcontractors were to transfer the files using FTP to Wärtsilä, including their light version
LSAR (see Section 6.3.3). A workflow system would initiate a workflow upon delivery of the
files to the Wärtsilä server. The files were to be decrypted and scanned for viruses, after which
they should go through the approval processes at Wärtsilä. Documents that were not approved
would be returned to subcontractors for more work while approved information would be saved to
the main data repository at Wärtsilä. Tight integration of the database and other system compo-
nents was part of the overall vision, but it was not planned for initial implementation.

)LJXUH�����6LPSOLILHG�3,0�6\VWHP�$UFKLWHFWXUH�

Author Publisher
Database
and
Fileserver

53

)LJXUH�����6\VWHP�$UFKLWHFWXUH�

������'7'�'HVLJQ

System-level data structure design involved designing SGML DTDs and the database schema.

Citec1, subcontracted by Wärtsilä to design and implement the whole system, developed eight dif-
ferent document types for the documents needed at power plants. The FMV DTD (designed for
and used by the Swedish military and subcontractors) was used as the model for these
DTDs [FMV95]. FMV is content-oriented (i.e., it uses logical element names that describe what
the data is as opposed to structural names like chapter and section), which was exactly what Wärt-
silä wanted. The full FMV DTD has a lot more “branches” than the eight that were selected and
modified for Wärtsilä, but it was decided to start simple and later, if needed, integrate the rest of
the FMV DTD.

1. Citec is the largest SGML service provider in Finland. The company homepage is http://
www.citec.fi. The author was hired by Citec in the summer of 1996.

54

The eight DTDs that were designed are: system, function, operation, corrective maintenance,
periodic maintenance, technical data, faulfinding and spare parts. Figure 16 shows one of them,
the spare parts DTD in tree view. The DTDs are documented in [CIT97b].

)LJXUH�����6SDUH�3DUWV�'7' >&,7��E@�

55

If and when these DTDs get revised, it will be a lot easier to migrate the old data to conform to the
new specifications relative to the old situation where information was not in a standardized for-
mat. Still, transformation is not a trivial problem (see for example [Lin97]).

������'DWDEDVH�'HVLJQ

A logistics support database (LSAR) — or Equipment Breakdown Structure (EBS) as it is
described in the reference — holds the logistics information about different components and their
documentation. Images in various predefined formats are also managed by the database. The
LSAR is a normal relational database. The authoring tool creates SGML files and keeps the local
LSAR database up-to-date. EBS is like the logical view of the LSAR database. Figure 17 shows
the EBS view.

The final LSAR database schema is shown in Figure 18. Because of the tree-like structure of the
EBS, the database also simulates a tree-like structure. This is achieved with the Parent ID col-
umn in the Structures table and the Parent Code column in the PPS Codes table. For
example, in the EBS we can see that a Fuel System consists of at least Oil Heater and Ball Valve.
Those components must have Fuel System as their parent. The components shown in the EBS are
generic types of components and they are listed in the PPS Codes table. That, and other tables,
are explained below.

The Structures table holds information about each individual structural component in a
power plant. Parts contains information about spare parts, and the Documents table stores
information about documents. Other tables are more or less auxiliary tables that were created
while optimizing the database. An earlier version of the database can be seen in Figure 32.

The PPS Codes table lists the generic types of components in a power plant. Each generic com-
ponent can have documentation associated with it, via the PPS Documentation table. The
Serial Number column in the Structures table shows that it is used to track additional
information about each manufactured component. Thus, there can be different documents for the
same kind of fuel pump, one of which is installed in a power plant in Beijing and one in Ankara,
for example. The Structures table connects to the Documents table via the Structure
Documentation table. Of course, there must also be a relationship with the PPS Codes and
Structures tables, because each individual component is always of some generic type of a
component.

There are many components in a power plant that need maintenance after a certain amount of
time. Obviously there must be documents that describe how these maintenance operations are to
be carried out. The Per Maint Intervals table is a helper table that makes it possible, for
example, to search documents for maintenace operations held every 500 hours.

The LSAR database is at least in the third normal form. It has not been checked to see if it would
qualify for more advanced normal forms.

56

)LJXUH�����3RZHU�3ODQW�(TXLSPHQW�%UHDNGRZQ�6WUXFWXUH�

57

)LJXUH�����/6$5�6FKHPD�

58

����9HULILFDWLRQ�DQG�9DOLGDWLRQ

No metrics were designed to measure the success or failure of the delivered system. Because of
the loose definitions it would have been quite difficult to measure anything. In retrospect, it can be
seen that at least one thing could be clearly measured: what percentage of documentation projects
are completed on time. Additionally, user satisfaction could be measured with interviews. As the
system has many different user groups, ranging from authors to end product users, several group
satisfaction profiles could be created. In fact, there were was a preliminary plan to observe the
system and its users in a controlled environment. There was an attempt to get external funding for
this testing, but it did not work out and the plan was abandoned.

Although the tools more or less did what they were supposed to do, the overall project failed at
Wärtsilä. There were several reasons. The transition to SGML was not properly orchestrated. The
project did not gain company-wide acceptance. It might have helped if the tools would have
exceeded expectations, but they took longer to develop than anticipated and were not as good and
easy to deploy as was hoped.

In retrospect it is quite easy to see what should have been done differently. The whole project at
Wärtsilä should have been handled differently. Acceptance at all levels is crucial for a transition
to SGML to succeed, and more people should have been involved. The SGML project at Wärtsilä
did not get any extra resources to carry out the testing and integration of the new system. The
authors and editors were expected to deliver information products using the existing system and
simultaneously install the new system, evaluate it, provide feedback to Citec and begin using the
new system in earnest.

After evaluation of the Microsoft Word-based editor the vision should have been re-evaluated.
The originally chosen solutions were proved limited. The correct decision would have been to
make a fresh start with a native SGML editor (for more details see Section 7.2).

It was also learned that the subcontractors were not ready to move into SGML. The jump to struc-
tural information was simply too great, even with all the preparation and tools provided.

Wärtsilä and Citec have evaluated the system using information prepared for the Wärtsilä Pilot
Power Plant located in Vaasa. Other small scale testing and use has been carried out by Wärtsilä
personnel. Perhaps the biggest value in the project has been to gain knowledge of SGML and
everything involved. The current SGML documentation projects are using the knowledge gath-
ered from this project, and they seem to be faring better.

&KDSWHU���

'RFXPHQW�$XWKRULQJ
AXIS (Biologic Band 4)> Hello, Roger. I assume you’re still there. This distance is a challenge even for me,
based as I am upon human templates... [politeness algorithm diagnosis for total mechanic-biologic thinker
function V-optimal] most of the time. I have come within a million kilometers of B-2 mark this moment 7-23-
2043-1205:15. I am preparing my machine and bio memories for receipt of information from the children,
now flying in a perfectly dispersing cloud toward B-2. Data on B-3 have been relayed. The planet, you can
see, is quite Jovian, very pretty, though tending towards the greens and yellows rather than reds and browns.
I’m enjoying the extra energy from B’s light: it allows me to get some work done that I’ve been delaying for
some time, opening up regions of memory and thought I’ve closed down during the cold and dark. I’ve just
completed a self analysis; as you doubtless have discovered by checking my politeness algorithm diagnostic. I
am V-optimal. I am not using the formal “I”; the joke about self awareness still does not make any sense to
me.

Greg Bear, 4XHHQ�RI�$QJHOV

There are several good SGML editors on the market, for example Adept•Editor. Most of them are
quite expensive, and require mastering operation concepts which have little in common with other
types of software. Obviously, they are general purpose tools. The requirements for the Wärtsilä
project made the development of a custom authoring tool necessary. The primary source of infor-
mation for this chapter was [CIT97b].

60

����$XWKRULQJ�7RRO

The WNS Author Tool created by Citec is used to “enter database records and write correspond-
ing SGML documents according to the WNS Base-DTD”. Simply put,this means that by selecting
a component from the Equipment Breakdown Structure (EBS) (see Figure 17 in Section 6.3) one
can write documentation for that specific component. The EBS information is in the LSAR data-
base. Information about the documentation modules are also saved into the LSAR database.

The authoring tool works with Microsoft Word 6. SGML Author for Word 1.0 is also needed,
along with Microsoft Access (database) Driver.

A new document is created by selecting New command from the File menu and selecting the
LSAR template. The default view is presented in Figure 19. In the figure the area marked with 1
on the left contains the editing fields. Area 2 contains the number and the type of information
modules contained in the record. Scrolling buttons are located in Area 3, and Area 4 is the data-
base display field. The next step is connecting to the LSAR database. This is accomplished simply
by double clicking the connection button (not visible in the figure), and selecting the LSAR data
source.

Changing the context in the EBS is accomplished via the context selection dialog (see Figure 20).
Editing fields are filled from drop down lists (see Figure 21). Information modules are attached
by double clicking one of the eight module buttons (not visible in the figures), for example,
Operation.

Information modules are written, more or less, as normal documents with Word. The SGML
structure must be generated in the import and export phases from style information because Word
does not handle it natively. Therefore, it is very important that only the styles defined in the LSAR
and information module templates be used. A sample information document can be seen in Figure
22. The styles from which the SGML information will be generated are visible on the left.

61

)LJXUH�����7KH�/6$5�,QWHUIDFH�

62

)LJXUH�����6HOHFWLQJ�&RQWH[W�IURP�WKH�(TXLSPHQW�%UHDNGRZQ�6WUXFWXUH�

)LJXUH�����6\VWHP�)LHOG�'URS�'RZQ�0HQX�

63

)LJXUH�����6DPSOH�,QIRUPDWLRQ�0RGXOH�LQ�:16�$XWKRU�7RRO�

����,PSOHPHQWDWLRQ�RI�WKH�:16�$XWKRULQJ�
7RRO

The first implementation work in the PIM project begun with the development of the authoring
tool. The first specifications were too optimistic; a functioning editor was expected in less than six
months. In reality, it took well over a year to ship the final version, although not all of that time
was spent on the authoring tool development alone. There was one developer allocated to working
with the authoring tool and the LSAR database schema.

The WNS Authoring Tool was implemented in Microsoft Word Basic. This presented some seri-
ous difficulties in programming. For example, the Word Basic application programming language
only allows function calls to nest five levels deep in other macros.

The authoring tool and the LSAR database were tested by Citec and Wärtsilä by trying to create
documentation with it. There were no software tools used in the testing. There was not really any
viable software available that could have been used, apart from test suites that actually run the
program and record inconsistencies between runs. This kind of software is expensive, and was not
seen to be cost effective.

The biggest problem with the Authoring Tool is that it is limited to a specific version of Microsoft

64

Word and SGML Author for Word. As newer versions of Word emerged, users of the Authoring
Tool were locked to version 6, because it is, for all practical purposes, impossible to use multiple
versions of Word on the same computer.

As soon as this was realized plans for improvement were prepared. In these plans the parts that
offer connection to databases and the specialized knowledge about the eight DTDs would be
coded into a generic DLL. After that, any SGML editor could be customized to write power plant
documentation by coding simple hooks from those applications into this DLL. The plan was never
carried out because the whole SGML project suffered problems at Wärtsilä.

An additional problem with the SGML Author for Word was licensing. It was not clear who
owned the product and who could give licenses.

Citec’s experience with other customized SGML editors suggest that it would not be a big risk to

choose a native SGML editor like Grif1 over a mixed implementation like SGML Author for
Word. The benefits of native SGML will come with a more reliable environment and faster appli-
cations. Additionally, native SGML editors often have a rich API with the possibility of using real
programming languages to implement additional packages. These outweight the initial, minor dif-
ficulties the users are faced with while learning a new program.

1. Grif SGML Editor is a product of Infrastructures for Information. Citec has created a customized SGML
editor from Grif for the offshore industry (http://www.citec.fi/company/products/
toolbox.html).

&KDSWHU���

'RFXPHQW�$VVHPEO\
Inaccuracy. We did not destroy those portions of your organic brain. We borrowed/took/expropriated a few
grams of tissue for use in a great goal. Our need was greater than yours’.

David Brin, +HDYHQ¶V�5HDFK

The practical work in this thesis was concentrated into the area of document assembly. See Figure
15 for how this relates to the Product Information Management project at Wärtsilä.

The work included expanding the functionality of the Multidoc Pro (MDP) SGML Browser so
that it could be used to connect to relational databases and create compound documents from sev-
eral document fragments managed by databases. In the Wärtsilä project the document fragments
were authored with the tool presented in the previous chapter, but the use of that particular tool is
not a requirement.

Additionally, Multidoc Pro was enhanced so that it could view relational databases as if they were
SGML documents.

66

����0XOWLGRF�3UR�6*0/�7RROV

Multidoc Pro1 is the brand name for a variety of SGML tools based on the popular Synex View-
Port SGML engine. The first tool was Multidoc Pro Browser, which was released in December
1996. Other versions soon followed.

The current tools in the Multidoc Pro product family are: Browser, Publisher, Database Browser,
Database Publisher, Translating Editor, CD Browser and Plugin. A special internatiolization pack-
age for Multidoc Pro has been developed to enable translation of the program to different lan-
guages. These translations can be performed by anyone without the need to recompile the
program. Several customized versions for different companies exist as well; for example, the
Norsk Hydro versions of the Browser and Publisher support special HyTime contextual link
(clink) handling.

Multidoc Pro did not grow out of nothing. Its predecessor was Multidoc LT, created for Wärtsilä
Diesel. The LT also had a predecessor, Eldoc. Both Eldoc and Multidoc LT are based on different
technology than Multidoc Pro and require that the SGML material be compiled to a proprietary
format before it can be used. Multidoc Pro, on the other hand, is a native SGML product which
does not require precompilation. Multidoc Pro is being developed with Microsoft Visual C++,
while Multidoc LT was done with Asymmetrix Multimedia Toolbook. C++ enables much finer
control over the program, not to mention the runtime speed benefit.

Some properties are common in all Multidoc Pro products. When an SGML document is opened
in Multidoc Pro, it displays a document window and may be configured to display other windows
(see Figure 23, right hand side). It is possible to define QDYLJDWRUV for individual documents or
define navigators for a specific public identifier. A navigator is like an electronic table of con-
tents. The navigators are displayed to the left of the actual document window (see Figure 23). It is
possible to define multiple navigators for a document, for example, a list of figures and a list of
tables. The navigator can display graphics as well as text, so a list of figures can be very descrip-
tive. In the navigator specification file the elements that one wants to appear in the Multidoc Pro
navigator are specified with SGML.

Multidoc Pro formats the SGML instances before displaying them on the screen (or sending them
to the printer). This formatting information is saved in special VW\OHVKHHWV, which are SGML files
themselves. A document can have multiple stylesheets attached, although only one is active at a
time.

A document can also have multiple ZHEV attached to it. Webs are also SGML documents like nav-
igators and stylesheets. Webs enable the annotation SGML documents, but a more exciting fea-
ture is provided as well — user defined links. This means that a reader can insert new links

1. Multidoc Pro is a registered trademark of Citec Engineering Oy.

67

between parts of the documents in addition to those created by the original author. The support for
navigators, stylesheets and webs are all enabled by the ViewPort SGML engine, so those con-
structs created with Multidoc Pro work as well with any other ViewPort-based product and vice
versa.

)LJXUH�����0XOWLGRF�3UR�6FUHHQVKRW�

One common use for the web files is document update. For example, if a company issues four
CDs a year but would like to notify customers of changes between issues, web files can be created
and emailed to customers. Customers then just attach the web files to the documents and immedi-
ately see where and what the changes are.

A construct that is not available in other ViewPort-based products is the document set. A docu-
ment set is a HyTime document, with HyTime links pointing to the “actual” content (see Figure
24). Multidoc Pro offers a special document set navigator for document sets.

Multidoc Pro supports a wide range of graphics formats, starting from commonplace WMF, GIF,
JPEG and bitmaps to somewhat more exotic CGM, PCX and PNG, for some example. Multidoc
Pro has multimedia support — it can display multimedia files in any format provided the needed
drivers are available. Common video formats include MPEG and AVI. Plain sound is naturally
available as well. All graphics and multimedia objects can be shown inline (multimedia objects
have the accompanying controls displayed with them, for example, the “play” button). It is possi-

68

ble to specify external helper applications for non-SGML data that Multidoc Pro can not show
itself.

)LJXUH�����'RFXPHQW�6HW�

Although Multidoc Pro does not offer full HTML support, it can still function as a web browser.
Naturally, SGML files can also be viewed over the Internet. The combination of a web browser
such as Netscape Communicator and the Multidoc Pro Plugin provides a complete HTML and
SGML Internet solution.

The Multidoc Pro programs are available for free evaluation period of 21 days from the Citec Web
service. After the evaluation period a license key must be purchased from Citec Software Ltd.

Unauthorized usage is prevented with CrypKey1. Multidoc Pro requires that a special Crypkey
service is running in the computer (or in a computer connected to the network). The service is
included in the installation program

����0XOWLGRF�3UR�'DWDEDVH�%URZVHU�DQG�3XE�
OLVKHU

The database extensions to Multidoc Pro Browser and Publisher makes it possible to browse rela-
tional databases as if they were SGML documents. More importantly, it is possible to assemble
large document collections or publications from several smaller SGML files that are managed by
relational databases. Before the databases can be used with Multidoc Pro Database Browser or
Publisher, the database structure must first be mapped into a database mapping file that Multidoc
Pro understands.

1. See http://www.crypkey.com for more information.

Doc
Set

Doc
A

Doc
B

Doc
C

69

������'DWDEDVH�0DSSLQJ

A database mapping starts by selecting ODBC data source names to connect to. A mapping can
include many data sources simultaneously, although only one data source will be used for one
dynamically generated SGML document. For each data source name in the configuration a map-
ping will be prepared. The mapping is simply a way to tie the hardcoded database DTD elements
to a given database’s structures. This is similar to the model-driven mapping described in Section
5.1.2.

A Data Source Name (DSN) is a concept in ODBC. It is closely related to the SGML concept of
the Public Identifier as it is simply a symbolic name associated with a real address. All DSNs are
registered with the ODBC driver manager. The driver manager knows where the symbolic name
really points to and can therefore act as an invisible bridge between applications and databases.

The hardcoded database DTD (see Appendix A) in Multidoc Pro Database Browser and Publisher
is very generic (yet simple, which is why it does not follow any methodologies for DTD structure,
like the one presented in [Mal95]). It has a container for a table and a query, and that container has
child elements that are used to output the different output columns of the query (or simply table
rows if the container element is mapped to a table). The table or query container element is called
level, while the different column elements are called title, dataname, datadescrip-
tion, reference and ref.name. The reference element is a special element because it
is used to create a HyTime link to an external SGML document.

Figure 25 shows a graph view of the DTD. The ASCII representation is in Appendix A. The fig-
ure is read from left to right and from top to bottom. The symbols are the same as in a normal
DTD (see Section 3.3.3). The question mark (?) means an optional element. The tilde (~) means
the element has attributes (attributes are not visible in the diagram). The connector between ele-
ment name boxes specifies how the elements appear in the content model. All but datavalue
have the same connector — this means that the element must appear in the order read from top to
bottom. For example, the element data has an optional dataname followed by zero or more
datavalues. The datavalue element has the OR connector. Its content can be either zero or
more datadescription elements or zero or more reference elements.

)LJXUH�����7KH�7UHH�9LHZ�RI�WKH�'DWDEDVH�'7' >&,7��D@�

A mapping can be saved. The save file is in ASCII format and, unfortunately, not too yeasy to
edit. The initial idea was to make the file binary, but ASCII was first chosen for debugging pur-

70

poses. SGML would be ideal save format, but it has not been implemented yet. An advanced data-
base DTD is being developed which will allow saving the whole mapping information in SGML
format. This DTD can be seen in Appendix B.

The Multidoc Pro dialog where the mapping is specified is shown in Figure 26. Right-clicking on
element names produces a context menu that has all the functionality needed to create the map-
ping (see Figure 27). The Map Database... menu item produces the dialogs Map Table,
Map Query or Map Column depending on context. The dialogs are shown in Figure 28, Figure
29 and Figure 30, respectively. The Map Query dialog was added late in the project and is very
crude in design compared to the other dialogs. Relationships... menu item opens the Map
Relationships dialog (see Figure 31). All the items in all the dialogs have the standard Win-
dows tooltips (mini-help windows that pop up when the mouse cursor hovers over a control) asso-
ciated with them. All the screenshots are from [CIT97a].

)LJXUH�����'DWDEDVH�0DSSLQJ�'LDORJ�

71

)LJXUH�����'DWDEDVH�0DSSLQJ�&RQWH[W�0HQX�

)LJXUH�����0DS�7DEOHV�'LDORJ�

The Map Column dialog (see Figure 30) allows mapping of any of the column elements. When
mapping normal elements, like title, the lower part of the dialog is disabled. The lower part is
used for reference element. The design makes it possible for the database to only holds the
file name without path or suffix information. This was crucial to Wärtsilä, because it cannot be
expected that the hundreds of subcontractors all have the exact same directory structure. With just
a small addition to this dialog (and slightly more logic to the program, of course) it would be pos-
sible to show the format of the file since it is not necessary for the file to always be in SGML.
What is needed is a new edit box where the notation type of the file is specified. This would gen-
eralize the design to work with images, for example.

72

)LJXUH�����0DS�4XHULHV�'LDORJ�

)LJXUH�����0DS�&ROXPQV�'LDORJ�

73

)LJXUH�����0DS�5HODWLRQVKLSV�'LDORJ�

������'RFXPHQW�*HQHUDWLRQ

An actual SGML document is generated according to the mappings. At first only the first level
level elements are generated. As the user navigates the document by clicking on the navigator
items (see Figure 23), new queries are sent to the database and the results are inserted in SGML
format into the document. The database results are inserted into small SGML template fragments
which are then inserted into the document. This approach makes it fast to generate and browse the
instance. Generating the full document from even a small one megabyte database would simply
take too much time. Figure 32 shows a sample database schema. Figure 33 shows a sample gener-
ated instance of it. Appendix C lists the mapping used in its ASCII form.

74

)LJXUH�����6DPSOH�'DWDEDVH�6FKHPD�

75

)LJXUH�����6DPSOH�/6$5�*HQHUDWHG�'RFXPHQW�>&,7��@�

������3XEOLVKLQJ

Publishing is done with the Document Set Editor. It is possible to create the whole publication in
the editor, but usually an initial set of documents will be created in one of two ways:

– selecting entries from the navigator and opening them in the document set editor, or

– querying the database for documents based on different search criteria.

Multidoc Pro Database Browser and Publisher have a query dialog. It has a simple SQL generator,
but it is also possible to write the SQL string by hand. The query will be sent to the query execu-
tor. The query executor will notice if the query produces columns that are pointers to file names as
specified in the database mapping. If all of the output columns are “document columns“, the
query results will be displayed in the document set editor. Otherwise, a tabular view is shown.

After changes are made in the editor, the document can be saved. The editor offers two choices:
document set or publication. A document set is mainly intended for electronic browsing. The doc-
ument set file itself contains links to the actual microdocuments that form the information prod-
uct. The publication file on the other hand is a large file where all the microdocuments are
included. The publication will normally be printed on paper.

76

����0XOWLGRF�3UR�,PSOHPHQWDWLRQ�'HWDLOV

The specifications for the publishing tool were written when the standard Multidoc Pro program
was beginning to take shape, but it was not yet released. After the specifications were written, the
author was hired by Citec to develop the database and document assembly functionality for Mul-
tidoc Pro. At that time a single programmer had been working on the standard Multidoc Pro prod-
uct for over six months, so the basic architecture was already in place.

The programming language used to develop Multidoc Pro was C++, or, to be exact, Microsoft
Visual C++. Multidoc Pro Database Browser and Publisher can only be compiled with version
4.1. The mainline Multidoc Pro code is nowadays compiled with Visual C++ 6.0.

Programming methodology followed mostly [Pro96], although more care was paid to avoid some
bad programming practices. For example, many Windows programming guides — and indeed the
Visual C++ development environment — seem to use public data members in classes while this is
recognized as poor style (for example, [Mey97]).

Typically an MFC (the Microsoft Foundation Class class library that ships with Visual C++)
application is based on a document-view architecture, as is Multidoc Pro. A document-view
architecture means that there is data (the “document”) that can be projected or shown in many
“views”. A change in the document can automatically cause an update in all the views of that doc-
ument.

Initially there was only one developer for MDP (acronym for Multidoc Pro) and, at the peak of the
project, there were six developers working on the same code at the same time. There have been
about 10 developers working on the code since the inception of the project. Programmers were

assigned to the project for a total of 12 person-years1. Of this, about 1.5 years was spent develop-
ing the database extensions, during 1996 and 1997, but only six months of this full time.

A version control system was acquired relatively late in the process. Before automated version
control snapshots of the code were saved manually every month or so to a Novell server where all
developers could access them. Merges were done by hand. This caused errors and delays, so the
PVCS Version Manager was finally purchased. Before that Microsoft Visual SourceSafe was
tried, but it was deemed too slow and lacking in features.

The whole application was not created from scratch. The Synex ViewPort engine was the core
around which the whole application was built and several other packages were acquired to speed
the development.

1. The real number of man-years spent on development is significantly less than 12 years
because most programmers were also included in other projects.

77

������6\QH[�9LHZ3RUW�(QJLQH

Synex ViewPort is an SGML engine. It has a fast, non-validating SGML parser. The engine is
available on Windows, Unix and Macintosh platforms. On Windows the engine is a Dynamic
Load Library (DLL) and has a C Application Programming Interface (API), although the internals
are written with C++. There are over 300 API functions. All the ViewPort functions have a prefix
Sv, for example SvMoveTagToNext. All tags, pages and other objects are represented as han-
dles — HTAG, HDOC and HPAGE to name a few.

This section is based mostly on [Syn98], including the images.

Figure 34 shows a simplified view of how data is processed by ViewPort. The formatter and mon-
itor are just names for ViewPort components and have nothing to do with the computer screen.
The user application in the project described in this thesis is Multidoc Pro.

Figure 35 shows an overview of the system components of the ViewPort DLL. ViewPort allows
customization of most of the components via callback functions. The entity manager was of spe-
cial interest at one point during the development of the Multidoc Pro database extensions, because
it was believed that by customizing the entity manager it would be easy to make ViewPort process
database information. Alas, this proved to be a false assumption.

The figure shows how data flows through the various ViewPort components before ending up on
the screen. It is possible to customize the behaviour of the components by registering callback
functions. For example, it is possible to register a callback for the entity manager. The callback
will be called for every entity (see Example 5 for a sample SGML instance with entities) View-
Port detects. The callback function may then process a database query, for example, providing the
contents of the entity to ViewPort and signaling that the entity has been handled and that no
default behaviour should happen. This approach was tried for Multidoc Pro database extensions.
Unfortunately ViewPort needs to resolve all entities when opening a document so this will not
work for large databases.

The figure clearly illustrates ViewPort processing and the meaning of various terms used here. It
should be very helpful to the reader to study it carefully before moving forward.

ViewPort is at its best in a browser application. Limited support for DTD, editing and validation
in general causes troubles when something beyond the functionality of a standard browser is
needed. For example, limited support — through an undocumented function — is available for
inserting new content into an already open document, but there is no information on whether or
not it is possible to delete content.

78

)LJXUH�����'DWD�3URFHVVLQJ�LQ�D�9LHZ3RUW�6\VWHP�

)LJXUH�����9LHZ3RUW�6\VWHP�&RPSRQHQWV�

79

������2WKHU�7KLUG�3DUW\�0RGXOHV

Several smaller software packages were used in the Multidoc Pro products in addition to the
Synex ViewPort engine.

The first problem area that was fixed with an additional module was a performance problem with
the default tree controls. Multidoc Pro has a special navigator that shows a document’s structure
as a tree view. With a moderately-sized document opening this tree view took about 20 minutes.
The SftTree/DLL was purchased to remedy the situation. It offers extremely fast and customiz-
able tree controls. The tree view that previously took dozens of minutes to open took only a cou-
ple of seconds with SftTree/DLL! The SftTree/DLL documentation even claims that creating a
tree view with 100,000 entries on a Pentium II 300 MHz takes only about 3 seconds [Sof99].
Interestingly enough, SftTree/DLL is written in C, but it has C and C++ APIs into it. The two C++
frameworks directly supported are MFC and OWL.

Another performance boost came from SmartHeap which replaced the default heap memory han-
dling provided by the Visual C++ compiler. SmartHeap claims to offer from 3 to 100 times faster
memory allocation than default compiler-provided allocation [MQ99].

Dialogs in the MFC class library must be specified with fixed-size dimensions. This is very limit-
ing. For example, the old file picker dialog cannot show long filenames. This would not be a prob-
lem if the dialog could be stretched so that the filename list box would also grow. This can be
accomplished with a neat little class library called NSViews [Nan97] that make the MFC dialogs
stretchable. It is naturally possible to specify that certain objects in a dialog cannot be moved or
stretched. NSViews is freeware.

The commercial package Objective Toolkit [Rog99], despite its large collection of small utility
classes, eventually contributed only a small directory picker. The Objective Plug-in, however,
proved invaluable while transforming Multidoc Pro into a Web browser plugin. The Objective
Plug-in product seems to be no longer supported.

The database extensions in Multidoc Pro were programmed with the help of Visual SQL from

Blue Sky Software1. It proved to be invaluable as it it was the only tool we could find that enabled
SQL queries to work through ODBC. The enhanced database handling classes were a bit disap-
pointing, but some were used nevertheless. Visual SQL does not seem to be supported anymore.
This is most likely because the new database classes in MFC offer everything the Visual SQL
classes offered and more.

Multidoc Pro can be downloaded from the web for free evaluation. The evaluation period is 21
days. After that time the program cannot be started because the special CrypKey mechanism pre-
vents this.

Other small ideas, fixes and improvements too numerous to mention were found from the various
MFC, C++ and Windows programming resources like mailing lists and web sites.

1. The company homepage is http://www.blueskysoftware.com/.

80

������'DWDEDVH�6XSSRUW�YLD�2SHQ�'DWD%DVH�&RQQHFWLYLW\

The Multidoc Pro Database Browser and Database Publisher were developed for Citec Software
Ltd. as a part of this thesis. These products were a part of a larger document management system
developed by Citec Engineering Oy for Wärtsilä Diesel (later Wärtsilä NSD). The overall project
is described in Chapter 6.

The database connections in the authoring tool and the Multidoc Pro Database Browser and Pub-
lisher are handled through Open Database Connectivity (ODBC) [Mic92], a Microsoft standard
for connecting to relational databases. ODBC offers a uniform interface for application develop-
ers who do not need to worry about the actual database. Most database vendors offer an ODBC
interface to their products. There are even ODBC drivers that enable connections over the inter-
net.

The class diagram for the ODBC classes is shown in Figure 36. The CRecordset is the stan-
dard recordset class in the MFC library, others were coded as part of Multidoc Pro. The
CRecordset wraps the SQL queries in C++ objects. The CAbstractRecordset offers
common functionality for the classes derived from it such as properly quoting table and column
names. CColumns and CTables were found from MFC samples and needed very little modifi-
cations. Their function is to extract the available columns and tables from the database, respec-
tively.

)LJXUH�����2'%&�5HFRUGVHW�&ODVVHV�

Because the default CRecordset class works only in the situation where the database schema is
known in advance, a special CDynaset recordset was needed for Multidoc Pro because the data-
base schema could be almost anything. The small utility CRecordCounter was based on an
example in a newsgroup posting — its function is to count the number of records in a recordset so
that progress controls can be used. Database connection was abstracted in the Visual SQL CVso-

CRecordset

CA bstractRecordset

CColumns CT ables CD ynaset

CRecordCounter

81

Database class (not shown in the figure), which inherits from the MFC CDatabase.

Multidoc Pro generates SQL queries based on user instructions. This generated SQL forms a very
small subset of the full SQL available. The grammar for the generated SQL is listed in Table 1.
Other types of queries generated transparently by the ODBC API functions may also occur. Que-
ries written by the user may also differ from this grammar.

7DEOH����0XOWLGRF�3UR�*HQHUDWHG�64/�*UDPPDU�

������0DLQ�)XQFWLRQDOLW\�&ODVVHV

The majority of the database-specific code is in the class HTDBSGMLDoc. What first started out
as an attempt to “make objects responsible for their own user interfaces” (Allen Holub), quickly
became the EORE antipattern [Bro98]. The blob antipattern refers to a design flaw in which a huge
class is created that has most of the functionality in the system. It should be fixed by dividing the
work more evenly between different classes.

The code uses beneficial design patterns as well. For example, the HTDTD object that contains
some knowledge about the hardcoded DTD is a VLQJOHWRQ ([Gam94], [Mey97] and more
in [Vli98]).

The HTDBSGMLDoc talks to the database, updates the controls in all the database-specific dia-
logs, builds the database connected SGML document, creates the publications and so on. It uses
some helpers to manage all this, acting as a EULGJH design pattern for some of its components.

<query> SELECT DISTINCT <column list> FROM <table list> [WHERE <con-
dition> [<connective> <condition>]*]

<table list> <table name>[, <table name>]*

<column list> COUNT(*) | <table name>.<column name> [,<table name>.<column
name>]*

<condition> <table name>.<column name> <compare> <table name>.<column
name> | <field value> | '<field value>'

<table name> table name | [table name]

<column name> column name | [column name]

<compare> = | < | > | <= | >= | <>

<connective> AND | OR

<field value> contents of a database field (a row from some column)

82

Figure 37 shows the classes that incorporate the main functionality in the database extensions.
HTCollection is a template for collections. HTDBSGMLDocCollection and HTDT-
DTreeItemDataCollection instantiate concrete versions of the template. HTDTDTree-
ItemData holds the information about the database mapping nodes. This information is used
when generating the SGML documents from databases. The black diamonds with lines indicate
the “has-a” relationship, i.e., the class with the diamond has the other class as a data member. This
is somewhat simplified Unified Modelling Language (UML) [Boo98] notation.

)LJXUH�����0DLQ�'DWDEDVH�([WHQVLRQV�&ODVVHV�

������&RGH�0HWULFV

Table 2 lists some code metrics about Multidoc Pro. The full Multidoc Pro includes code for stan-
dard Multidoc Pro and all the variations of it, including Translating Editor and customized brows-
ers. Binary files (icons, bitmaps, etc.) and third party code is excluded. Metrics were extracted
with [Van98] so they are not as accurate as they could be. Nevertheless, the figures show that the
database extensions are roughly 20% of the full Multidoc Pro source code.

H T Col lection< >

H T D B SGM L D ocCol lection< > H T D T D T reeI temD ataCol lecti on < >

H T D T D T reeI temD ataH T D B SGM L D oc

83

7DEOH����0XOWLGRF�3UR�&RGH�0HWULFV�

������7HVWLQJ

Testing of Multidoc Pro was difficult at times due to the integration of the various third party
components, some of which were only in binary format. If an error was tracked down to a third
party module, it was usually necessary to submit a bug report to the manufacturer and to pray that
they would fix it in a timely fashion. If a fix was not promised, or was taking too long,
workarounds had to be figured out. This was also a difficult task because of the black box nature
of some components.

Numega BoundsChecker1 software was purchased mainly to track memory related bugs. Bound-
sChecker required recompilation of the source to instrument the code. The BoundsChecker com-
pile also found some bugs. During run-time BoundsChecker can cause a pop-up a message box to
appear informing the user of memory leak or other kinds of errors such as uninitialized variables.
Errors can be filtered and logged as well. BoundsChecker offers different levels of instrumenta-
tion, each level catching more errors. Unfortunately, the most rigorous level of compilation was
unusable with Multidpc Pro as it always got into an endless loop.

)XOO�
0XOWLGRF�

3UR

2I�:KLFK�
'DWDEDVH�

([WHQVLRQVD

a. Approximate figures, code mixed within files of stan-
dard Multidoc Pro not counted.

)LOH�&RXQW 252 77

7H[W�/LQHV 92736 17862

6HPLFRORQV 34076 7313

&RPPHQWV 12249 1835

�6HPLFRORQV 36 40

�&RPPHQWV 13 10

&ODVVHV 190 40

'DWD�0HPEHUV 1553 337

0HPEHU�)XQFWLRQV 2625 552

1. BoundsChecker is a product of Compuware Corporation. See information about BoundsChecker from
URL http://www.numega.com/products/aed/vc.shtml.

84

The database was another great source of grief, at least in the beginning. When SQL queries were
received from the database designer and tried with the ODBC classes, they invariably failed with
Microsoft Access. The ODBC log and the error messages were of some help in tracking down the
causes of failures. The biggest help was the Visual SQL package. Rewrite of the query with the
Visual SQL query editor/generator always gave a suitable query for the ODBC classes.

In addition to the testing performed at development time, Multidoc Pro Database Publisher and
Browser were tested in real use situations both at Citec and Wärtsilä. Several of these kinds of test
versions of Multidoc Pro were prepared during the development to gather feedback and find bugs.

����,Q�5HWURVSHFW

Multidoc Pro Database Browser and Publisher have showed a way to view relational databases as
SGML data. Although the idea of a relational database keeping track of SGML information is not
new, the combination of the Author Tool and the Multidoc Pro Database tools have made the PIM
system relatively efficient and easy to use.

The implemented system accomplished what it was supposed to do: assemble large documents
from document fragments managed by databases. Many things can be automated, so customized
information production is easy. Needless to say, there is still room for improvement.

The implementation of Multidoc Pro Database Browser and Publisher taught us some lessons. It
was learned that ViewPort was not too well-suited for the job. More control over the DTD and
some of functionality that is used in an editor was sorely needed. Because ViewPort was basically
intended for browsers, it does not handle insertion and deletion of content very well.

The save file format should have been SGML in all cases. This could actually be taken a step fur-
ther by keeping some of the information in memory resident SGML files instead of normal C/C++
structures.

There were two major problems in the project. Probably the bigger one was that it was not always
clear what was needed and how the full system would work and be integrated together. And even
if the intent was clear in the beginning, the objectives were redefined during the project. As usual,
more planning would have saved some work in the later stages. All this caused unnecessary work
and concentration on things that were not important. Another problem was ViewPort in the imple-
mentation of the database extensions. There were many cases were ViewPort simply was not flex-
ible enough and an alternative had to be found. In one case, there was even an undocumented
function that would have solved a problem but it took about six months from the initial question
to the ViewPort manufacturer for them to reveal that they indeed already had a solution!

It is not too difficult to see what changes would be beneficial for the Multidoc Pro Database
Browser and Publisher if they are ever developed further. The mapping does not allow mapping
arbitrary structures from database. This is the most urgently needed improvement. Another
change in this direction would be to allow arbitrary database DTDs. A better user interface would

85

make the database mapping easier to accomplish. Publication is, in fact, the most important fea-
ture of the Database Publisher and warrants special attention. Speed is also an issue that should be
looked into. Some things that would also need more work, but do not concern the program as
such, are better help and better sample databases and mappings. Finally, there are some annoying
bugs in the document assembly procedures that sometimes cause micro-documents to fail to nest
properly in the document set or publication.

The other Multidoc Pro products have received good reviews. The product family has grown to
include translation tools and the like, and this progress is likely to continue. However, the Author-
ing Tool is as good as dead and buried, and the Multidoc Pro Database Browser and Publisher fare
not much better. The database extensions were designed and implemented to be more generic
tools, which is why some copies of it has been sold to other customers as well. Unfortunately, not
enough to justify further development at this time.

Although the SGML engine ViewPort has been a good choice, it is based on old ideas. With the
new HyTime standard the whole parser should be based on the grove idea. The ViewPort-specific
formatting language must be replaced with a standard solution like DSSSL. What all this means is
that a new version of ViewPort must be based on these standardized ideas or a completely new
SGML/HyTime engine is needed. In fact, that is where the development seems to be going.

In March 1998 Netscape released the source to its web browser. Citec saw this as a great opportu-
nity, and has been working with the code since then. Citec has already gained reputation dealing
with the huge and difficult piece of code that will be the future Netscape Communicator 5.0.
Citec’s own SGML/XML-enhanced browser DocZilla is based on the same source — with
HyTime linking support. And who knows, maybe the database support will be incorporated into

DocZilla at some point.

&KDSWHU���

6XPPDU\
Only fools prefer the past.

Frank Herbert

Using relational databases to manage product documentation is not a new concept. There are tech-
nically better alternatives, but technology alone rarely drives business. Relational databases dom-
inate the market and many organizations are already using relational databases. To make them
into document management system could be as simple as adding a single table to the product
information database. This new table would holds references to product documents which are
saved on a normal file server. Of course, new relationships must be added, but that is about all that
is required of the database.

The weakness of this model is that it is very easy to break the reference from the database to the
file system — for example, by simply renaming files on the file system.

More work is required with the tools that interact with the product information database. There
must be a special authoring tool that makes it easy to write product documentation and tie it in
with the records in the database. Additionally, a publishing tool is needed that can create manuals
from the document fragments managed by the database.

The most difficult challenge, however, is managing people. After all is said and done, it is of no
use if the people in question do not accept the change or if they are not given enough training and

87

time to move to the new system.

Even though the project with Wärtsilä did not go as was planned, the implementation of the sys-
tem showed it is not too difficult, technically, to implement a document management system the
way it is described in this paper. Although many publications mention this technique of using
relational databases to manage SGML documents or document fragments, they rarely disclose the
details and difficulties involved with it. The participants in this project learned almost everything
the hard way. A second try, if there ever will be one, should be almost a guaranteed success.

88

5HIHUHQFHV
[Ang97] Angerstein Paula, :K\�<RXU�'RFXPHQW�0DQDJHPHQW�6\VWHP�6KRXOG�&DUH�$ERXW�

+\SHUOLQNV, available on the WWW at <URL: http://www.texcel.no/
se97talk.htm>, Texcel Research, Inc., 1997.

[Arb95] ArborText, Inc., *HWWLQJ�6WDUWHG�ZLWK�6*0/��$�*XLGH�WR�WKH�6WDQGDUG�*HQHUDO�
L]HG�0DUNXS�/DQJXDJH�DQG�,WV�5ROH�LQ�,QIRUPDWLRQ�0DQDJHPHQW, available on
the WWW at <URL: http://www.arbortext.com/wp.html>, 1995.

[Bal97] Balasubramanian V., Bashian Alf, Porcher Daniel, $�/DUJH�6FDOH�+\SHUPHGLD�
$SSOLFDWLRQ�8VLQJ�'RFXPHQW�0DQDJHPHQW�$QG�:HE�7HFKQRORJLHV, in “HYPER-
TEXT ‘97“, Proceedings of the Eight ACM Concerence on Hypertext, pages 134-145,
1997.

[Boo98] Booch Grady, Jacobson Ivar, Rumbaugh James, 7KH�8QLILHG�0RGHOLQJ�/DQJXDJH�
8VHU�*XLGH, Addison-Wesley Publishing Company, 1998.

[Bou99] Bourret Ronald, ;0/�DQG�'DWDEDVHV, available on the WWW at <URL: http://
www.informatik.tu-darmstadt.de/DVS1/staff/bourret/xml/
XMLAndDatabases.htm>, Technical University of Darmstadt, 1999.

[Bro98] Brown William J., Malveau Raphael C., Brown William H., McCormick III Hays W.,
$QWLSDWWHUQV��5HIDFWRULQJ�6RIWZDUH��$UFKLWHFWXUH�DQG�3URMHFWV�LQ�&ULVLV, John
Wiley & Sons, 1998.

[Bus45] Bush Vannevar, $V�:H�0D\�7KLQN, The Atlantic Monthly, July (1945), pages 641-
649.

[Böh94] Böhm Klemens, Aberer Karl, 6WRULQJ�+\7LPH�'RFXPHQWV�,Q�DQ�2EMHFW�2ULHQWHG�
'DWDEDVH, in: “CIKM ‘94“, Proceedings of the Third International Conference on
Information and Knowledge Management, pages 26-33, 1994.

[CIM98] CIMdata, 3URGXFW�'DWD�0DQDJHPHQW��7KH�'HILQLWLRQ��$Q�LQWURGXFWLRQ�WR�&RQ�
FHSWV��%HQHILWV��DQG�7HUPLQRORJ\, available on the WWW at <URL: http://
www.cimdata.com>, 1988.

[CIT97a] CITEC Engineering Oy, 0XOWLGRF�3UR�'DWDEDVH�%URZVHU�DQG�'DWDEDVH�3XEOLVKHU�
²�8VHU¶V�0DQXDO, 1997.

[CIT97b] CITEC Engineering Oy, :16�$XWKRU�7RRO�IRU�WKH�%DVH�'7'�8VHU�0DQXDO, 1997.

[CIT98] CITEC Engineering Oy, 0XOWLGRF�3UR�%URZVHU�3XEOLVKHU�3URGXFW�%ULHI, 1998.

[DeR94] DeRose Steven J., Durand David G., 0DNLQJ�+\SHUPHGLD�:RUN��$�8VHU¶V�*XLGH�
WR�+\7LPH, Kluwer Academic Publishers, 1994.

89

[Eck95] Eckel Bruce, 7KLQNLQJ�LQ�&��, Prentice Hall, Inc., 1995.

[Elo95] Elovainio Kimmo, 6*0/�%DVHG�'RFXPHQWDWLRQ�3URFHVV, VTT OFFSETPAINO,
1995.

[FMV95] FMV, 'HVFULSWLRQ�RI�)09�*UXQG�'7', available on the WWW at <URL:
http://info.admin.kth.se/SGML/Bibliotek/DTDer/FMVGrund-
DTD/>, 1995.

[Gam94] Gamma Erich, Helm Richard, Johnson Ralph, Vlissides John, 'HVLJQ�3DWWHUQV��(OH�
PHQWV�RI�5HXVDEOH�2EMHFW�2ULHQWHG�6RIWZDUH, Addison–Wesley, 1994.

[Gol90] Goldfarb Charles F., 7KH�6*0/�+DQGERRN, Oxford University Press Inc., 1990.

[Hof99] Hoffman James, ,QWURGXFWLRQ�WR�6WUXFWXUHG�4XHU\�/DQJXDJH, available on the
WWW at <URL: http://w3.one.net/~jhoffman/sqltut.htm>, 1999.

[ISO86] ISO 8879:1986, ,QIRUPDWLRQ�3URFHVVLQJ�²�7H[W�DQG�2IILFH�6\VWHPV�²�6WDQGDUG�
*HQHUDOL]HG�0DUNXS�/DQJXDJH��6*0/�, 1986.

[ISO89] ISO 8613, ,QIRUPDWLRQ�7HFKQRORJ\�²�7H[W�DQG�2IILFH�6\VWHPV�²�2IILFH�'RFX�
PHQW�$UFKLWHFWXUH��2'$�, 1989.

[ISO92a] ISO/IEC 9075:1992, ,QIRUPDWLRQ�7HFKQRORJ\�²�'DWDEDVH�/DQJXDJHV�²�64/,
1992.

[ISO92b] ISO/IEC 8632:1992, ,QIRUPDWLRQ�3URFHVVLQJ�6\VWHPV�²�&RPSXWHU�*UDSKLFV�
0HWDILOH�IRU�WKH�6WRUDJH�DQG�7UDQVIHU�RI�3LFWXUH�'HVFULSWLRQ�,QIRUPDWLRQ�
�&*0�, 1992.

[ISO93] ISO/IEC 10646-1:1993, ,QIRUPDWLRQ�WHFKQRORJ\�²�8QLYHUVDO�0XOWLSOH�2FWHW�
&RGHG�&KDUDFWHU�6HW��8&6��²�3DUW����$UFKLWHFWXUH�DQG�%DVLF�0XOWLOLQJXDO�
3ODQH, 1993.

[ISO94] ISO 10303, ,QGXVWULDO�$XWRPDWLRQ�6\VWHPV�DQG�,QWHJUDWLRQ�²�3URGXFW�'DWD�
5HSUHVHQWDWLRQ�DQG�([FKDQJH��67(3�, 1994-1998.

[ISO96] ISO/IEC 10179:1996, ,QIRUPDWLRQ�7HFKQRORJ\�²�7H[W�DQG�2IILFH�6\VWHPV�²�
'RFXPHQW�6W\OH�6HPDQWLFV�DQG�6SHFLILFDWLRQ�/DQJXDJH��'666/�, 1996.

[ISO97] ISO/IEC 10744:1997, ,QIRUPDWLRQ�7HFKQRORJ\�²�+\SHUPHGLD�7LPH�EDVHG�6WUXF�
WXULQJ�/DQJXDJH��+\7LPH�, 1997.

[ISO98a] ISO/IEC 14772-1:1998, ,QIRUPDWLRQ�WHFKQRORJ\�²�&RPSXWHU�JUDSKLFV�DQG�LPDJH�
SURFHVVLQJ�²�7KH�9LUWXDO�5HDOLW\�0RGHOLQJ�/DQJXDJH�²�3DUW����)XQFWLRQDO�
VSHFLILFDWLRQ�DQG�87)���HQFRGLQJ��950/�, 1998.

90

[ISO98b] ISO/IEC 16262:1998, ,QIRUPDWLRQ�7HFKQRORJ\�²�(&0$6FULSW�/DQJXDJH�6SHFLIL�
FDWLRQ, 1998.

[Kim97] Kimber W. Eliot, $�7XWRULDO�,QWURGXFWLRQ�WR�6*0/�$UFKLWHFWXUHV, available on the
WWW at <URL: http://www.isogen.com/papers/archintro.html>,
ISOGEN International Corp., 1997.

[Kim98] Kimber W. Eliot, 3UDFWLFDO�+\SHUPHGLD��$Q�,QWURGXFWLRQ�WR�+\7LPH, Prentice
Hall, 1998.

[Kla98] Klavans Judith, 'DWD�%DVHV�LQ�'LJLWDO�/LEUDULHV��:KHUH�&RPSXWHU�6FLHQFH�DQG�
,QIRUPDWLRQ�0DQDJHPHQW�0HHW, in “PODS ‘98“, proceedings of the seventeenth
ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems,
pages 224-226, 1998.

[Lam94] Lamport Leslie, /D7H;��$�'RFXPHQW�3UHSDUDWLRQ�6\VWHP, Addison-Wesley Pub-
lishing Company, Inc, 1994.

[Lin97] Lindén Greger, 6WUXFWXUHG�'RFXPHQW�7UDQVIRUPDWLRQV, PhD Thesis, Series of Pub-
lications A, University of Helsinki, Report A-1997-2 (1997).

[Loi99] Loizou George, Levene Mark, $�*XLGHG�7RXU�RI�5HODWLRQDO�'DWDEDVHV�DQG�
%H\RQG, Springer Verlag, 1999.

[Loo98] Loomis Mary, Chaudri Akmal B., 2EMHFW�'DWDEDVHV�LQ�3UDFWLFH, Prentice-Hall, Inc,
1998.

[Mal95] Maler Eve, Andaloussi Jeanne El, 'HYHORSLQJ�6*0/�'7'V��)URP�7H[W�WR�0RGHO�
WR�0DUNXS, Prentice Hall, 1995.

[Met99] Metsäranta Pekka, ³5DNHQWHLVHQ�WLHGRQ�VlLO\WWlPLQHQ��;0/�GRNXPHQWWL�2$,6�
YLLWHPDOOLVVD��LQ�)LQQLVK�´, Master of Science Thesis, Jyväskylä University, avail-
able on the WWW at <URL: http://www.syspro.fi/pekka.metsa-
ranta/gradu/>, 1999.

[Mey97] Meyers Scott, (IIHFWLYH�&�������:D\V�WR�,PSURYH�<RXU�3URJUDPV�DQG�'HVLJQV,
Addison-Wesley Publishing Company, 1997.

[Mic92] Microsoft Corporation, 2'%&�$SSOLFDWLRQ�3URJUDPPHU¶V�*XLGH, Microsoft, 1992.

[MQ99] MicroQuill, 6PDUW+HDS, available on the WWW at <URL: http://www.micro-
quill.com/prod_sh/index_sh.htm>, 1999.

[Mya98] Myaeng Sung Hyon, Jang Don-Hyun, Kim Mun-Seok, Zhoo Zong-Cheol, $�)OH[LEOH�
0RGHO�IRU�5HWULHYDO�RI�6*0/�'RFXPHQWV, in “SIGIR ‘98“, Proceedings of the 21st
Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 138-145, 1998.

91

[Nan97] NanoSoft Corporation, 169LHZV�9HUVLRQ�����, available on the WWW at <URL:
http://www.nanocorp.com/nsviews/default.htm>, 1997.

[Nel82] Nelson Theodore Holm, /LWHUDU\�0DFKLQHV, Mindful Press, 1982.

[Nel97] Nelson Theodore Holm, (PEHGGHG�0DUNXS�&RQVLGHUHG�+DUPIXO, available on the
WWW at <URL: http://www.xml.com>, 1997.

[New91] Newcomb Steven R., Kipp Neill A., Newcomb Victoria T., ³+\7LPH´��7KH�+\SHU�
PHGLD�7LPH�EDVHG�'RFXPHQW�6WUXFWXULQJ�/DQJXDJH, Communications of the
ACM, Vol. 43, No. II (1991).

[OAS99] OASIS, 7KH�'RF%RRN�'7', available on the WWW at <URL: http://
www.oasis-open.org/docbook/>, 1999.

[Onn99] Onnela Tapio, %LWWLDUNLVWR�YRL�MllGl�OXNHPDWWD��LQ�)LQQLVK�, Tiede 2000, 5 (1999),
p. 37.

[Paq92] Paquet Gaël, +\SHU������$Q�2QOLQH�2SHUDWLQJ�0DQXDO�IRU�D�&KHPLFDO�0DQXIDF�
WXUHU�8VLQJ�+\SHUWH[W�,QWHJUDWHG�ZLWK�DQ�2EMHFW�2ULHQWHG�'DWDEDVH, in: “SAC
‘92”, Proceedings of the 1992 ACM/SIGAPP Symposium on Applied Computing
(vol. II): Technolological Challenges of the 1990’s, pages 976-984, 1992.

[PDM97a] The PDM Information Center, courtesy of Hewlett-Packard, 8QGHUVWDQGLQJ�3URGXFW�
'DWD�0DQDJHPHQW, available on the WWW at <URL: http://
www.pdmic.com/undrstnd.html>, 1997.

[PDM97b] The PDM Information Center, +RZ�WKH�WHFKQRORJ\�+DV�(YROYHG��$�6KRUW�5HYLHZ,
available on the WWW at <URL: http://www.pdmic.com/evolt-
ech.html>, 1997.

[Pel97a] Peltonen Björn, Mäki Erik, &DVH�6WXG\��:lUWVLOl�'LHVHO�2\��3RZHU�3ODQWV, avail-
able on the WWW at <URL: http://www.citec.fi/company/services/
case/wd_pp.html>, 1997.

[Pel97b] Peltonen Björn, ³&DVH�6WXG\´��7KH�6*0/��6WDQGDUG�*HQHUDOL]HG�0DUNXS�/DQ�
JXDJH��,PSOHPHQWDWLRQ�DW�1RUVN�+\GUR��'R�0RUH�ZLWK�/HVV�DQG�'R�,W�%HWWHU, in:
“SGML Finland 1997 — seminaarijulkaisu”, Proceedings of Finnish SGML Confer-
ence, SGML User’s Group Finland, pages 4-9, 1997.

[Pre98] Prescod Paul,)RUPDOL]LQJ�6*0/�DQG�;0/�,QVWDQFHV�DQG�6FKHPDWD�ZLWK�)RUHVW�
$XWRPDWD�7KHRU\, available on the WWW at <URL: http://www.pres-
cod.net/forest/shorttut/>, 1998.

[Pro96] Prosise Jeff, 3URJUDPPLQJ�:LQGRZV����ZLWK�0)&��&UHDWH�3URJUDPV�IRU�:LQ�
GRZV�4XLFNO\�ZLWK�WKH�0LFURVRIW�)RXQGDWLRQ�&ODVV�/LEUDU\, Microsoft Press,
1996.

92

[Rei98] Reinwald Berthold, Pirahesh Hamid, 64/�2SHQ�+HWHURJHQRXV�'DWD�$FFHVV, in
“SIGMOD ‘98”, Proceedings of ACM SIGMOD International Conference on Man-
agement of Data, pages 506-507, ACM, 1998.

[Rog99] RogueWave Software, 2EMHFWLYH�7RRONLW, available on the WWW at <URL: http:/
/www.roguewave.com/products/ot/>, 1999.

[Ryt97] Rytkönen Kimmo, Kunz Jürgen, '2&67(3�²�7HFKQLFDO�'RFXPHQWDWLRQ�&UHDWLRQ�
DQG�0DQDJHPHQW�XVLQJ�67(3, in: “SGML Finland 1997 — seminaarijulkaisu”,
Proceedings of Finnish SGML Conference, SGML Finland User’s Group, pages 39-
68, 1997.

[Sip96] Sipser Michael, ,QWURGXFWLRQ�WR�WKH�7KHRU\�RI�&RPSXWDWLRQ, International Thom-
son Publishing, 1996.

[Sof99] Softel vdm Inc., 6IW7UHH�'//�����3URGXFW�,QIRUPDWLRQ, available on the WWW at
<URL: http://www.softelvdm.com/sfttree.html>, 1999.

[Som96] Sommerville Ian, 6RIWZDUH�(QJLQHHULQJ, Addison–Wesley Publishers Ltd., 1996.

[Sun81] Sundgren Bo, 'DWDEDVHU�RFK�GDWDPRGHOOHU��LQ�6ZHGLVK�, Studentlitteratur, 1981.

[Syn98] Synex Information AB, 6\QH[�9LHZ3RUW�9HUVLRQ�����3URJUDPPHU¶V�0DQXDO, 1998.

[Tra95] Travis Brian, Waldt Dale, 7KH�6*0/�,PSOHPHQWDWLRQ�*XLGH��$�%OXHSULQW�IRU�
6*0/�0LJUDWLRQ, Springer-Verlag, 1995.

[Tur96] Turner Ronald C., Douglass Timothy A., Turner Audrey J., 5($'0(��67��6*0/�
)RU�:ULWHUV�DQG�(GLWRUV, Prentice-Hall, Inc, 1996.

[Van98] Vanvliet Peter A., &RGH&RXQW, available on the WWW at <URL: http://
www.nanocorp.com/vanvliet/peter/codecount/codecount.htm>,
1998.

[Vli98] Vlissides John, 3DWWHUQ�+DWFKLQJ��'HVLJQ�3DWWHUQV�$SSOLHG, Addison-Wesley Pub-
lishing Company, 1998.

[W3C96] World Wide Web Consortium, &DVFDGLQJ�6W\OH�6KHHWV��&66�, available on the
WWW at <URL: http://www.w3.org/TR/REC-css>, 1996.

[W3C98] World Wide Web Consortium, ([WHQVLEOH�0DUNXS�/DQJXDJH��;0/�����, available
on the WWW at <URL: http://www.w3.org/TR/REC-xml>, 1998.

[W3C99a] World Wide Web Consortium, 1DPHVSDFHV�LQ�;0/, available on the WWW at
<URL: http://www.w3.org/TR/REC-xml-names/>, 1999.

93

[W3C99b] World Wide Web Consortium, ([WHQVLEOH�6W\OHVKHHW�/DQJXDJH��;6/��6SHFLILFD�
WLRQ��:�&�:RUNLQJ�'UDIW����$SULO�����, available on the WWW at <URL:
http://www.w3.org/TR/WD-xsl/>, 1999.

[Wak99] Wakizono Ryuji, Kawamura Toshikazu, Tsuchiya Takehiko, Hatanaka Takahiro,
Tanaka Tatsuji, 2EMHFW�2ULHQWHG�'DWDEDVH�0DQDJHPHQW�6\VWHP�IRU�3URFHVV�&RQ�
WURO�6\VWHPV��'HYHORSPHQW�DQG�(YDOXDWLRQ�, in “SAC ‘99”, Proceedings of the
1999 ACM Symposium on Applied Computing, pages 204-209, ACM, 1999.

[Whi99] Whitehorn Mark, Marklyn Bill, ,QVLGH�5HODWLRQDO�'DWDEDVHV��:LWK�([DPSOHV�LQ�
$FFHVV, Springer-Verlag, 1999.

[Yar99] Yarger Randy Jay, Reese George, King Tim, 0\64/�	�P64/, O’Reilly & Associ-
ates, Inc., 1999.

94

$SSHQGL[�$�

'DWDEDVH�'7'
This appendix presents the predefined, hardcoded database DTD used by Multidoc Pro Database
Browser and Publisher. It should be noted that the actual DTD is slighty more detailed than what
the user sees (and what is coded in the program). The reason for this is that the actual DTD antic-
ipates some enhancements and changes in the future.

<!--**-- -
-* *--
--* Database DTD for MultiDoc PRO *--
--* Version 1.0 *--
--* May 5, 1997 *--
--* *--
--* *--
--* Joakim Östman, Oy CITEC AB Information Technology *--
--* Minor modifications by Heikki Toivonen, CITEC *--
--* *--
--* *--
--* Typical doctype declaration of document sets *--
--* <!DOCTYPE Database PUBLIC *--
--* "-//CITEC INFORMATION TECHNOLOGY//DTD Database//EN" "DATABASE.ENT" *--
--**-->
<!DOCTYPE database [
<!ELEMENT database - O (level+) >
<!ATTLIST database
database CDATA #IMPLIED >

<!ELEMENT level - O (title? , (data* , level*)) >
<!ATTLIST level
table CDATA #IMPLIED
subdoc CDATA #IMPLIED >

<!ELEMENT title - O ((#PCDATA) | subscript | superscript)+ >
<!ATTLIST title
column CDATA #IMPLIED >

<!ELEMENT superscript - O (#PCDATA) >

<!ELEMENT subscript - O (#PCDATA) >

<!ELEMENT data - O (dataname? , datavalue*) >

<!ELEMENT dataname - O ((#PCDATA) | subscript | superscript)+ >

95

<!ATTLIST dataname
column CDATA #IMPLIED >

<!ELEMENT datavalue - O (datadescription* | reference* | (value , unit?)*)
>

<!ELEMENT datadescription - O ((#PCDATA) | subscript | superscript)+ >
<!ATTLIST datadescription
column CDATA #IMPLIED >

<!ELEMENT reference - O (ref.name? , nameloc) >
<!ATTLIST reference
id ID #REQUIRED
mediatype (SGML , NON-SGML) "SGML"
linkend IDREF #REQUIRED
HyTime NAME "clink"
column CDATA #IMPLIED >

<!ELEMENT ref.name - O ((#PCDATA) | subscript | superscript)+ >
<!ATTLIST ref.name
column CDATA #IMPLIED >

<!ELEMENT nameloc - O (nmlist) >
<!ATTLIST nameloc
id ID #REQUIRED
HyTime NAME "nameloc" >

<!ELEMENT nmlist - O (#PCDATA) >
<!ATTLIST nmlist
docorsub ENTITY #IMPLIED
nametype (element , entity) "element"
HyTime NAME "nmlist" >

<!ELEMENT value - O ((#PCDATA) | subscript | superscript)+ >
<!ATTLIST value
column CDATA #IMPLIED >

<!ELEMENT unit - O ((#PCDATA) | subscript | superscript)+ >
<!ATTLIST unit
column CDATA #IMPLIED >
]>

96

$SSHQGL[�%�

'DWDEDVH�'7'��
This appendix shows an attempt to fix some of the shortcomings of the first version of the data-
base DTD that was implemented in Multidoc Pro Database Browser and Publisher. This DTD can
store all the information about the connection to the database and the queries needed to dynami-
cally build the SGML document while browsing the document instance. No hidden data would be
needed. Queries can be reused for greater efficiency.

The document language specified in this DTD is both the database mapping save format and the
format of the dynamically built SGML document.

This DTD is a work in progress and has not been tested to offer everything that would be needed.

<!--***--
--* *--
--* Database DTD for MultiDoc PRO *--
--* Version 1.5 *--
--* Jan 31, 1998 *--
--* *--
--* (c) CITEC Engineering Oy 1996-1998 *--
--* Heikki Toivonen *--
--* *--
--* *--
--* Typical doctype declaration *--
--* <!DOCTYPE Database PUBLIC *--
--* "-//CITEC INFORMATION TECHNOLOGY//DTD Database//EN" "DATABASE.ENT" *--
--***-->
<!-- TODO: Parameter passing/relationships/opening levels-->
<!-- General notice about attribute values: - quotes are double quotes (")
except when the value contains double quotes - if the value contains
double quotes, the quotes will be single quotes (’) - if the value
contains both single and double quotes, the quotes will be double quotes
and double quotes in the value will be replaced with an "entity" (>)
-->
<!-- If this DTD is used to save a database mapping configuration, the
root element will be configuration. For documents generated based on the
configuration the root element is either databases or database depending
on the windows attribute. -->

<!ELEMENT configuration - - (configuration-title? , databases) >
<!ATTLIST configuration
id ID #REQUIRED

97

windows (multi | single) "multi" -- multi opens each database element --
-- in its own window --
>

<!ELEMENT configuration-title - - (#PCDATA) >

<!ELEMENT databases - - (databases-title? , database+) >
<!ATTLIST databases
id ID #REQUIRED >

<!ELEMENT databases-title - - (#PCDATA) >

<!ELEMENT database - - (dsn, database-title? , meta , level+) >
<!ATTLIST database
id ID #REQUIRED
generated-levels NUMBER "1" -- Initial number of levels to generate, --
-- negative value means infinite levels --
database CDATA #REQUIRED -- ODBC Data Source Name --
>

<!ELEMENT database-title - - (#PCDATA) >

<!ELEMENT meta - - (stylesheets?, navigators?, webs?, queries? , contents?
, URL-directories? , suffixes? , ndatas?) >

<!ELEMENT stylesheets - - (stylesheet+) >

<!ELEMENT stylesheet - - (name,file) >

<!ELEMENT name - - (#PCDATA) >

<!ELEMENT file - - (#PCDATA) >

<!ELEMENT navigators - - (navigator+) >

<!ELEMENT navigator - - (name,file) >

<!ELEMENT webs - - (web+) >

<!ELEMENT web - - (name,file) >
<!ATTLIST web
web (web | docweb) "web" -- CHECK THIS! --
>

<!-- Queries are stored here so they can be reused and it is easier to
change them. The queries are referenced from the elements using them. -->
<!ELEMENT queries - - (query+) >

<!ELEMENT query - - (sql) >
<!ATTLIST query
id ID #REQUIRED >

<!-- The SQL text of the query could be represented without SGML structure
if there was a suitable SQL parser. Alternative/addition is to have a DTD

98

fragment describing the structure of SQL queries. Below is a simple
version.
Example 1: SELECT DISTINCT Doctors.Name,Rooms.* FROM Doctors,Rooms WHERE
(Doctors.Age > 50) AND ((Rooms.Wing = ’East’) AND NOT (Doctors.Patients >=
100)) ;

<sql id="sql-1">
<clause>
<select distinct="distinct">
<columns>
<table-column-entry>
<table>Doctors</table>
<column>Name</column>
</table-column-entry>
<table-column-entry>
<table>Rooms</table>
<column all="all"></column>
</table-column-entry>
</columns>
</select>
<from>
<tables>
<table>Doctors</table>
<table>Rooms</table>
</tables>
</from>
<where>
<where-group>
<table-column-entry>
<table>Doctors</table>
<column>Name</column>
</table-column-entry>
<operator operator="lt">
<column-value>50</column-value>
</where-group> <
where-group logical-operator="AND">
<where-group>
<table-column-entry>
<table>Rooms</table>
<column>Wing</column>
</table-column-entry>
<operator operator="eq">
<column-value quotes="quotes">East</column-value>
</where-group>
<where-group logical-operator="AND" reverse="reverse">
<table-column-entry>
<table>Doctors</table>
<column>Patients</column>
</table-column-entry>
<operator operator="ge">
<column-value>100</column-value>
</where-group>
</where-group>
</where>

99

</clause>
</sql> -->

<!ELEMENT sql - - (clause+ , order-by?) >
<!ATTLIST sql
id ID #REQUIRED >

<!ELEMENT clause - - (clause* | (select , from , where? , order-by?)) >
<!ATTLIST clause
union CDATA #FIXED "UNION" -- ignored for 1st clause -- >

<!ELEMENT select - - (columns*) >
<!ATTLIST select
distinct (distinct | nodistinct) "distinct"
all (all | notall) "notall" -- if all, semantic error to have columns --
count (count | nocount) "nocount" -- if count, semantic error to have
columns -- >

<!ELEMENT columns - - (table-column-entry+) >

<!ELEMENT table-column-entry - - (table , column) >

<!ELEMENT table - - (#PCDATA) >
<!ATTLIST table
all (all | notall) "notall" -- if all, semantic error to have columns all
--
-- also semantic error to have content -- >

<!ELEMENT column - - (#PCDATA) >
<!ATTLIST column
all (all | notall) "notall" -- if all, semantic error to have tables
all --
-- also semantic error to have content -- >

<!ELEMENT from - - (tables+) >

<!ELEMENT tables - - (table+) >

<!ELEMENT where - - (where-group+) >

<!ELEMENT where-group - - (where-group* | (table-column-entry , operator
, column-value)) >
<!ATTLIST where-group
logical-operator (AND | OR) #IMPLIED -- semantic error on first, otherwise
required --
reverse (reverse | normal) "normal" -- NOT -- >

<!ELEMENT operator - o EMPTY >
<!ATTLIST operator
operator (eq | ne | lt | le | gt | ge | like) #REQUIRED
-- = <> < <= > >= LIKE -- >

<!ELEMENT column-value - - (#PCDATA | table-column-entry) >
<!ATTLIST column-value

100

quotes (quotes | noquotes) "noquotes" >

<!ELEMENT order-by - - (columns+) >
<!ATTLIST order-by direction (asc | desc) "asc" >

<!-- Contents, URL-directories, suffixes and NDATAs are also reusable.-->
<!ELEMENT contents - - (content+) >

<!ELEMENT content - - (#PCDATA) >
<!ATTLIST content
id ID #REQUIRED >

<!ELEMENT URL-directories - - (dir+) >

<!ELEMENT dir - - (#PCDATA) >
<!ATTLIST dir
id ID #REQUIRED >

<!ELEMENT suffixes - - (suffix+) >

<!ELEMENT suffix - - (#PCDATA) >
<!ATTLIST suffix
id ID #REQUIRED >

<!ELEMENT ndatas - - (ndata+) >

<!ELEMENT ndata - - (#PCDATA) >
<!ATTLIST ndata
id ID #REQUIRED >

<!-- A level element has a pointer to its query. Some of the query’s
output columns are mapped to its child elements like title,
datadescription and so on. NOTE: It would be possible to required explicit
output columns. Then it would be possible to point from a column-mappable
element to a table-column-entry. A level element can have multiple
relationships with its children. At least one relationship must exist
between a parent element and each of its children. During the mapping the
left and right-hand side table-column-entry’s are filled. When a root
level (no ancestor level elements) element is being generated, its
relationships mappings are checked, and the level element’s query is
modified accordingly. After the query has been resolved and the level SGML
is being written, the column-value parts of the relationships will be
written. When a child level item is being generated, the parent levels
relationships are checked, as well as the current relationships, and the
actual query is modified accordingly. The child can find the correct
relationships with pointers to it’s parent’s relationships. -->
<!ELEMENT level - - (title? , level-meta? ,(data* , level*)) >
<!ATTLIST level
query IDREF #REQUIRED
relationships CDATA #IMPLIED -- parent level’s relationship ids -- >

<!ELEMENT level-meta - - (relationship+) >

<!ELEMENT relationship - - (table-column-entry , table-column-entry ,

101

column-value?) >
<!ATTLIST relationship
id CDATA #REQUIRED -- CDATA because multiple same id’s -- >

<!ELEMENT title - - ((#PCDATA) | subscript | superscript)+ >
<!ATTLIST title
content IDREF #IMPLIED
table CDATA #IMPLIED
column CDATA #IMPLIED >

<!ELEMENT superscript - - (#PCDATA) >

<!ELEMENT subscript - - (#PCDATA) >

<!ELEMENT data - - (dataname? , datavalue*) >

<!ELEMENT dataname - - ((#PCDATA) | subscript | superscript)+ >
<!ATTLIST dataname
content IDREF #IMPLIED
table CDATA #IMPLIED
column CDATA #IMPLIED >

<!ELEMENT datavalue - - (datadescription* | reference* | (value , unit?)*)
>

<!ELEMENT datadescription - - ((#PCDATA) | subscript | superscript)+ >
<!ATTLIST datadescription
content IDREF #IMPLIED
table CDATA #IMPLIED
column CDATA #IMPLIED >

<!-- The directory, filename, suffix and NDATA are found in entities in a
static SGML/HyTime document. Dynamically built document must store this
information someplace else, here it is done with references to database
meta material. The filename attribute is filled during document
generation. Handling the link to external document also poses a problem
with dynamic document because the link is normally managed through
entities. There are two choises: either dynamically generate new entities
or hook into the process that deals actually reading the entity’s
contents. The latter is how Multidoc Pro does this: when the entity stored
in nmlist element is required, the parent reference element information is
looked instead of normal entity handling. -->
<!ELEMENT reference - - (ref.name? , nameloc) >
<!ATTLIST reference
id ID #REQUIRED
mediatype (SGML , NON-SGML) "SGML"
linkend IDREF #REQUIRED
HyTime NAME "clink"
directory IDREF #IMPLIED
filename CDATA #IMPLIED
suffix IDREF #IMPLIED
ndata IDREF #IMPLIED -- Defaults to SGML --
table CDATA #IMPLIED
column CDATA #IMPLIED >

102

<!ELEMENT ref.name - - ((#PCDATA) | subscript | superscript)+ >
<!ATTLIST ref.name
content IDREF #IMPLIED
table CDATA #IMPLIED
column CDATA #IMPLIED >

<!ELEMENT nameloc - - (nmlist) >
<!ATTLIST nameloc
id ID #REQUIRED
HyTime NAME "nameloc" >

<!ELEMENT nmlist - - (#PCDATA) >
<!ATTLIST nmlist
entity-info IDREF #REQUIRED
docorsub ENTITY #IMPLIED
nametype (element , entity) "element"
HyTime NAME "nmlist" >

<!ELEMENT value - - ((#PCDATA) | subscript | superscript)+ >
<!ATTLIST value
content IDREF #IMPLIED
table CDATA #IMPLIED
column CDATA #IMPLIED >

<!ELEMENT unit - - ((#PCDATA) | subscript | superscript)+ >
<!ATTLIST unit
content IDREF #IMPLIED
table CDATA #IMPLIED
column CDATA #IMPLIED >

103

$SSHQGL[�&�

6DPSOH�'DWDEDVH�0DSSLQJ
This appendix shows the beginning of a sample database mapping file. The plan was that this for-
mat would have been replaced by a binary format. The Appendix B shows an SGML version that
is both the display format and save format at the same time.

The DSN row in the beginning identifies the ODBC data source name which this mapping con-
nects to. The KEY rows identify nodes, MAP and REL rows contain information about the actual
mapping of the node. Nodes become SGML elements in the generated document instance.

DSN=LSAR SAMPLE
KEY=DATABASE:1
MAP=LSAR SAMPLE;0;0;LSAR SAMPLE;0;0()()
REL=
KEY=DATABASE:1,LEVEL:1
MAP=Projects;1;0;Projects;0;0()()
REL=Projects.Project ID = Systems.Project ID
KEY=DATABASE:1,LEVEL:1,TITLE:1
MAP=Project Name;2;0;Projects;0;0()()
REL=
KEY=DATABASE:1,LEVEL:1,LEVEL:1
MAP=Systems;2;0;Systems;0;0()()
REL=Systems.Documents ID = Documents.Documents ID;Systems.Documents ID =
Per Maint Documents.Documents ID;Systems.System ID = Units.System ID

...

	Product Document Management with SGML and Relational Databases
	Product Document Management with SGML and Relational Databases
	Product Document Management with SGML and Relational Databases
	Heikki
	Heikki
	Heikki
	Toivonen

	Master of Science Thesis
	20.4.2000
	University of Jyväskylä
	University of Jyväskylä
	Department of Mathematical Information Technology
	Department of Mathematical Information Technology

	Tiivistelmä
	Tiivistelmä
	Tietokannat ja rakenteiset dokumentit perustuvat niin erilaiseen teknologiaan ja ajatteluun, että...
	Tekijä: Heikki Toivonen
	Yhteystiedot: sähköposti
	Työn nimi: Tuotedokumentaation hallinta SGML:n ja relaatiotietokantojen avulla
	Avainsanat: SGML, XML, HyTime, rakenteiset dokumentit, dokumenttien hallinta, tuotetiedon hallint...

	Abstract
	Abstract
	Databases and structured documents have been used apart from each other. The situation has change...
	Author: Heikki Toivonen
	Contact: Email
	Title: Product Document Management with SGML and Relational Databases
	Keywords: SGML, XML, HyTime, structured documents, document management, product data management, ...

	Acknowledgements
	Acknowledgements
	This thesis was years in the making. Partly the reason was that I got tired of writing it, but al...
	I would like to thank the various persons who have inspired me on my way of learning SGML and hel...
	The people at the 4th International HyTime Conference held in Montreal, Canada, deserve a special...
	Last but not least I would like to thank my wife Virpi for her understanding and patience.
	Vaasa
	Vaasa
	Vaasa
	Vaasa
	Vaasa

	Heikki
	Toivonen
	Table of Contents
	1 Introduction 5
	2 Product Data Management 8
	2.1 What Is Product Data Management? 9
	2.2 There Is No Product without Documentation 10
	2.3 Economic Issues 13

	3 Structured Documents 15
	3.1 Ways to Indicate Structure 15
	3.2 Languages And Parsers 17
	3.3 Standard Generalized Markup Language 18
	3.3.1 A Brief History of SGML 18
	3.3.2 Structure Is Not Layout 18
	3.3.3 SGML in a Nutshell 19
	3.3.4 DTD And Document Instance 20
	3.3.5 External Entities — A Simple Way to Reuse And Manage Text Fragments 23
	3.3.6 Users of SGML 24

	3.4 Extensible Markup Language 25
	3.5 HyTime 26
	3.5.1 Hypermedia Concepts and Dimensions 27
	3.5.2 HyTime Hyperdocuments 27
	3.5.3 HyTime Markup 28
	3.5.4 Architectural Forms 29

	3.6 Related Standards 30

	4 Databases 31
	4.1 Common Database Properties 31
	4.2 Relational Database Model 32
	4.2.1 Basic Building Blocks 33
	4.2.2 Normalization 34
	4.2.3 Queries And Beyond 35

	4.3 Other Database Models 36
	4.3.1 Object Oriented Databases 36
	4.3.2 More Exotic Database Models 37

	5 Managing Documents with Databases 39
	5.1 Differences And Similarities Between Databases And Structured Documents 40
	5.1.1 Storing And Retrieving Complete SGML Documents — A Challenge to Databases 40
	5.1.2 Extracting Parts of Documents from Databases 41

	5.2 General Purpose Databases 42
	5.3 Specialized Databases 43
	5.4 Writing Modular Documents 45
	5.5 Addressing External Resources 46
	5.6 Client-Server Architecture 47
	5.7 Background Summary 48

	6 Product Information Management Project at Wärtsilä NSD Power Plants 49
	6.1 Analysis Pointed to SGML And Relational Databases 50
	6.2 Requirements And Specification 51
	6.3 Design and Architectrure 52
	6.3.1 Architectural Design 52
	6.3.2 DTD Design 53
	6.3.3 Database Design 55

	6.4 Verification and Validation 58

	7 Document Authoring 59
	7.1 Authoring Tool 60
	7.2 Implementation of the WNS Authoring Tool 63

	8 Document Assembly 65
	8.1 Multidoc Pro SGML Tools 66
	8.2 Multidoc Pro Database Browser and Publisher 68
	8.2.1 Database Mapping 69
	8.2.2 Document Generation 73
	8.2.3 Publishing 75

	8.3 Multidoc Pro Implementation Details 76
	8.3.1 Synex ViewPort Engine 77
	8.3.2 Other Third-Party Modules 79
	8.3.3 Database Support via Open DataBase Connectivity 80
	8.3.4 Main Functionality Classes 81
	8.3.5 Code Metrics 82
	8.3.6 Testing 83

	8.4 In Retrospect 84

	9 Summary 86
	Appendix A: Database DTD 94
	Appendix B: Database DTD 2 96
	Appendix C: Sample Database Mapping 103

	List of Figures
	Figure 1: Document Life Cycle 12
	Figure 2: Check-out, Check-in and Merge with Version Control System 13
	Figure 3: The Structure of Scene Markup in Regenesis 16
	Figure 4: SGML Document Diagram 19
	Figure 5: Dimensions of Hypermedia 27
	Figure 6: Relational Database Model 33
	Figure 7: Object Oriented Database 36
	Figure 8: Hierarchical Database Model 38
	Figure 9: Network Database Model 38
	Figure 10: Document Table in Relational Database 43
	Figure 11: SGML Database 44
	Figure 12: Authoring with an Intermediate Link Document 46
	Figure 13: Client-Server Architecture for Document Management System 48
	Figure 14: Simplified PIM System Architecture 52
	Figure 15: System Architecture 53
	Figure 16: Spare Parts DTD�[CIT97b] 54
	Figure 17: Power Plant Equipment Breakdown Structure 56
	Figure 18: LSAR Schema 57
	Figure 19: The LSAR Interface 61
	Figure 20: Selecting Context from the Equipment Breakdown Structure 62
	Figure 21: System Field Drop Down Menu 62
	Figure 22: Sample Information Module in WNS Author Tool 63
	Figure 23: Multidoc Pro Screenshot 67
	Figure 24: Document Set 68
	Figure 25: The Tree View of the Database DTD�[CIT97a] 69
	Figure 26: Database Mapping Dialog 70
	Figure 27: Database Mapping Context Menu 71
	Figure 28: Map Tables Dialog 71
	Figure 29: Map Queries Dialog 72
	Figure 30: Map Columns Dialog 72
	Figure 31: Map Relationships Dialog 73
	Figure 32: Sample Database Schema 74
	Figure 33: Sample LSAR Generated Document [CIT98] 75
	Figure 34: Data Processing in a ViewPort System 78
	Figure 35: ViewPort System Components 78
	Figure 36: ODBC Recordset Classes 80
	Figure 37: Main Database Extensions Classes 82

	List of Examples
	Example 1: Markup Sample 7
	Example 2: LaTeX Sample 16
	Example 3: Contents of a Sample CATALOG File 20
	Example 4: SGML Document Structure As Text 22
	Example 5: External Entities 23
	Example 6: A Well-formed XML Document 25
	Example 7: A Valid XML Document 25
	Example 8: HyTime clinks 28
	Example 9: SQL SELECT Statement 35
	Example 10: Markup Generated from Database 42

	Terms And Acronyms
	Terms And Acronyms
	Quotes are from the HyTime standard�
	anchor
	anchor
	“An object (or a list of objects) that is linked to other objects or lists of objects by a hyperl...
	“An object (or a list of objects) that is linked to other objects or lists of objects by a hyperl...

	attribute
	attribute
	SGML and XML
	SGML and XML

	catalog
	catalog
	Catalog files map
	Catalog files map

	contextual hyperlink
	contextual hyperlink
	“A hyperlink that occurs ‘in context’, meaning that one anchor of the link is the link element it...
	“A hyperlink that occurs ‘in context’, meaning that one anchor of the link is the link element it...

	document type definition
	document type definition
	SGML and XML document structure specification is called document type definition�(
	SGML and XML document structure specification is called document type definition�(

	DSN
	DSN
	Data Source Name is a concept from
	Data Source Name is a concept from

	DTD
	DTD
	Abbreviation for
	Abbreviation for

	element
	element
	SGML documents consist of elements that contain other elements and text. Start
	SGML documents consist of elements that contain other elements and text. Start

	entity
	entity
	SGML has several kinds of entities. Parameter entities are used inside a
	SGML has several kinds of entities. Parameter entities are used inside a

	grove
	grove
	“Graph Representation Of property ValuEs.” A grove is the parse tree that a parser produces in me...
	“Graph Representation Of property ValuEs.” A grove is the parse tree that a parser produces in me...

	hyperlink
	hyperlink
	“An information structure that represents a relationship among two or more objects.”
	“An information structure that represents a relationship among two or more objects.”

	hypertext
	hypertext
	“Information that can be accessed in more than one order.”
	“Information that can be accessed in more than one order.”

	HyTime
	HyTime
	Hypermedia/Time-based Structuring Language. HyTime is an international standard for representing ...
	Hypermedia/Time-based Structuring Language. HyTime is an international standard for representing ...

	link
	link
	For the purposes of this thesis a link is the same as
	For the purposes of this thesis a link is the same as

	markup
	markup
	In the case of structured documents, the document structure is specified with markup. The markup ...
	In the case of structured documents, the document structure is specified with markup. The markup ...

	metadata
	metadata
	Data about data, for example the creation date of a file is metadata about the file.
	Data about data, for example the creation date of a file is metadata about the file.

	micro-document
	micro-document
	A document, often small. Usually micro-documents are assembled to create complete manuals.
	A document, often small. Usually micro-documents are assembled to create complete manuals.

	Multidoc Pro
	Multidoc Pro
	An
	An

	navigator
	navigator
	A
	A

	notation
	notation
	Entities
	Entities
	Entities

	ODBC
	ODBC
	Open Database Connectivity. A Microsoft standard through which applications can access different ...
	Open Database Connectivity. A Microsoft standard through which applications can access different ...

	public identifier
	public identifier
	Certain SGML and XML objects can be referred to by public identifiers. These include
	Certain SGML and XML objects can be referred to by public identifiers. These include

	reference concrete syntax
	reference concrete syntax
	The SGML standard defines a default SGML declaration that is assumed if no explicit SGML declarat...
	The SGML standard defines a default SGML declaration that is assumed if no explicit SGML declarat...

	SGML
	SGML
	Standard Generalized Markup Language. SGML is an international standard for structured documents....
	Standard Generalized Markup Language. SGML is an international standard for structured documents....

	SGML declaration
	SGML declaration
	The first part of an SGML document that specifies things like character encoding and the maximum ...
	The first part of an SGML document that specifies things like character encoding and the maximum ...

	SGML (document) instance
	SGML (document) instance
	The third major part of an SGML document, the “actual document“.
	The third major part of an SGML document, the “actual document“.

	stylesheet
	stylesheet
	A stylesheet describes how a document should be formatted. Structural documents usually separate ...
	A stylesheet describes how a document should be formatted. Structural documents usually separate ...

	system identifier
	system identifier
	A SGML
	A SGML

	tag
	tag
	The
	The

	web
	web
	A web in
	A web in

	XML
	XML
	Extensible Markup Language. XML is a World Wide Web Consortium Recommendation (effectively an Int...
	Extensible Markup Language. XML is a World Wide Web Consortium Recommendation (effectively an Int...

	Introduction
	Introduction
	Everything has structure.
	Everything has structure.
	Unknown
	Unknown
	Unknown

	The driving force for this paper was the Product Information Management project started at Wärtsi...
	This thesis describes how product documents in structural format can be managed effectively with ...
	SGML
	SGML

	This thesis will show the importance of effective management of product documents. The advantages...
	This document is divided into two parts. The first part explains the different standards and tech...
	The second part is divided into four chapters and it describes the SGML document management syste...
	The implementation of the tools described in the second part happened mostly in 1996 and 1997. So...
	Each chapter begins with a quote, often from a science-fiction novel. The quote is somehow relate...
	Some images (screenshots particularly) are not of the highest quality. That is because the origin...
	This document itself is in structured format. The first drafts were written with
	There are
	Some words about the SGML markup used in this document is in order. The first occurrence of an im...
	Example 1: Markup Sample
	Example 1: Markup Sample
	<tag>Some SGML/XML sample</tag>

	Product Data Management
	Product Data Management
	I don’t understand
	I don’t understand
	I don’t understand

	Not to nowhere
	Not to nowhere

	That’s impossible
	That’s impossible

	Nemes sighed. Her siblings were idiots.
	Dan
	Dan
	Dan
	Simmons

	The Rise of Endymion

	Product Data Management (
	The practical part of this thesis evolved because of a need for better management of documents. T...
	2.1 What Is Product Data Management?
	2.1 What Is Product Data Management?
	Product Data Management can be thought of as the umbrella word covering (among other things) Engi...
	PDM evolved from systems built in-house into commercial systems in the 1980s. The vendors in thos...
	A
	The
	The user functions in a
	Workflow and process management can make the system proactive. Predefined paths for data can be s...
	Customization is needed to better fit an off-the-self
	Communication is improved simply by using a PDM system because everyone using the system has acce...
	As can be seen from the wide area of functionality covered, a
	That pretty much covers the basics of product data management. As this thesis is mostly concerned...

	2.2 There Is No Product without Documentation
	2.2 There Is No Product without Documentation
	Simply put, there are no products that do not have documentation associated with them.
	Let us think of a nail: A straight thin piece of iron or some other material, sharp at one end an...
	Let us say we would like to make a new nail. First we must determine where it should be used. Thi...
	Given this simple example with the nail it is remarkable that product documentation is usually in...
	A document is as important part of a product as any other tangible thing. Maybe even more so. In ...
	The same rules that govern the management of other products apply to document management as well....
	The document then goes through the checking phase where facts, spelling, readability and other th...
	Check-in, check-out and locking are important concepts in document authoring. A document database...
	Documents can be prepared as if they were being built on an assembly line. The planning phase may...
	<GRAPHIC>
	<GRAPHIC>
	Figure 1: Document Life Cycle

	If a document database is being used, documents may also be edited simultaneously by multiple aut...
	Let us consider an example where two authors are editing the same document at the same time. The ...
	<GRAPHIC>
	<GRAPHIC>
	Figure 2: Check-out, Check-in and Merge with Version Control System

	Next we will have a look of the economic issues concerning documents and documentation.

	2.3 Economic Issues
	2.3 Economic Issues
	The amount of time and money spent on producing new information is staggering. For example, 20%�o...
	Here is a specific example having to do with oil rigs. It is estimated that about half of the man...
	The World Wide Web is also growing rapidly. The amount of text in English grows about 50% per yea...
	It has been estimated that authors spend up to 30%�of their time searching for information and ro...
	Technical manuals are often huge, while usually only a small part of the whole document is needed...
	Other important areas not yet mentioned include document interchange and long term storage. While...
	This section has developed the claim that

	Structured Documents
	Structured Documents
	HyTime is the borg standard.
	HyTime is the borg standard.
	W.
	W.
	W.
	Eliot
	Kimber

	All the information we have gathered into something that could be considered to be a document has...
	3.1 Ways to Indicate Structure
	3.1 Ways to Indicate Structure
	All documents have at least implicit structure. For some documents the structure has been declare...
	LaTeX�
	Example 2: LaTeX Sample
	Example 2: LaTeX Sample
	\section{Onion Pie} \begin{list} \item large onions \item large tomato ...

	The example above would be formatted by a LaTeX system so that a section heading would appear fir...
	An example of external markup is the graphics format for Regenesis
	<GRAPHIC>
	<GRAPHIC>
	Figure 3: The Structure of Scene Markup in Regenesis

	There is a hybrid version of the internal/external markup. Some documents contain the structural ...
	Structured documents are normally formatted to get usable view of the data. It would not make muc...

	3.2 Languages And Parsers
	3.2 Languages And Parsers
	Structured documents use some language to describe the structure. For example, the C++ programmin...
	All languages (or more precisely, grammars) can be divided into several different categories, for...
	A parser is a software component that can read data conforming to some grammar and build an in- m...
	The in-memory representation of data (or events) is easier to handle programmatically than the ra...
	Standard Generalized Markup Language documents belong to the category of internally marked- up st...

	3.3 Standard Generalized Markup Language
	3.3 Standard Generalized Markup Language
	Standard Generalized Markup Language, or
	3.3.1 A Brief History of
	3.3.1 A Brief History of
	Before going into the gritty details, let us take a journey into the history of SGML�(the followi...
	The credit for this change is often given to William Tunnicliffe, who gave a speech in 1967 on th...
	Charles Goldfarb, together with Edward Mosher and Raymond Lorie, was working on an
	In 1978 Charles Goldfarb, who had continued his research even after

	3.3.2 Structure Is Not Layout
	3.3.2 Structure Is Not Layout
	It has been said that all documents have structure, but let’s take a memorandum for an example. A...
	Structure should

	3.3.3 SGML in a Nutshell
	3.3.3 SGML in a Nutshell
	SGML is used to create vocabularies for real document languages. The vocabulary specifies what na...
	SGML
	SGML

	SGML
	SGML

	<GRAPHIC>
	<GRAPHIC>
	Figure 4: SGML Document Diagram

	If the declaration or
	The catalog can be used to locate the
	Example 3: Contents of a Sample CATALOG File
	Example 3: Contents of a Sample CATALOG File
	PUBLIC “-//Heikki Toivonen//DTD Memo//EN” “memo.dtd”

	Usually the reference concrete syntax is enough for most documents, although it has some rather f...
	The SGML declaration is not very interesting for the normal user of

	3.3.4 DTD And Document Instance
	3.3.4 DTD And Document Instance
	Refer to
	The reference concrete syntax specifies that declarations in a DTD start with
	In an element declaration, after the element name, it is possible to specify if the start and/or ...
	The second to the last part of the element declaration is the content model. The content model ca...
	The last part of the element declaration can be used to specify inclusion or exclusion exceptions...
	An element can have multiple attributes. Attributes have a name, a data type and a keyword specif...
	Usually entities declared in the
	The
	Example 4
	Example 4

	The
	The element definitions start with
	The document instance begins with the
	Example 4: SGML Document Structure As Text
	Example 4: SGML Document Structure As Text
	<!SGML ... > <!DOCTYPE memo PUBLIC "-//Heikki Toivonen//DTD Memo//EN" [
	<!NOTATION GIF SYSTEM> <!ENTITY tooth SYSTEM "tooth.gif" NDATA GIF > <!ELEMENT memo - o (title? ,...
	<!ELEMENT title - o (#PCDATA)>
	<!ELEMENT para - o (#PCDATA)>
	<!ELEMEMT image - o EMPTY>
	<!ATTLIST image
	pic ENTITY #REQUIRED>
]>
	<memo id="unique-id-1" language="English"> <title>Remember Dentist!</title>
	<para>Dentist tomorrow at one o’clock.
	<image pic=’tooth’> </memo>

	3.3.5 External Entities — A Simple Way to Reuse And Manage Text Fragments
	3.3.5 External Entities — A Simple Way to Reuse And Manage Text Fragments
	External entities are such a critical part of this thesis that it is important to get the basics ...
	An entity is used in a document by simply inserting the entity’s name, surrounded by an ampersand (
	It is possible to define a default entity whose contents will be used for entities that are not d...
	External entities allow reuse of parts of documents in other documents even if the files are save...
	Example 5: External Entities
	Example 5: External Entities
	File
	<!DOCTYPE manual PUBLIC “-//Heikki Toivonen//DTD Manual//EN“ [
	<!ENTITY chap1 SYSTEM “chap1.inc“>
	<!ENTITY chap2 SYSTEM “chap2.inc“>
]>
	<manual>&chap1;&chap2;</manual>
	File
	<chapter><title>Introduction...</chapter>
	File
	<chapter><title>The Life of Brian...</chapter>

	The problem with the external chapters in

	3.3.6 Users of SGML
	3.3.6 Users of SGML
	The value of
	Although the original users were mainly involved with the military, the commercial wing has caugh...
	SGML
	SGML

	It may be interesting to note that HyperText Markup Language (
	Regardless of

	3.4 Extensible Markup Language
	3.4 Extensible Markup Language
	The Extensible Markup Language�(
	XML
	XML

	The only valid character set is Unicode�
	XML
	XML

	Example 6: A Well-formed XML Document
	Example 6: A Well-formed XML Document
	<?xml version=’1.0’?>
	<memo>
	<title>This is a title</title>
	<para>I have to remember this</para>
	</memo>

	Example 7: A Valid XML Document
	Example 7: A Valid XML Document
	<?xml version=’1.0’?>
	<!DOCTYPE memo [
	<!ELEMENT memo (title,para+)>
	<!ELEMENT title (#PCDATA)>
	<!ELEMENT para (#PCDATA)>
]>
	<memo>
	<title>This is a title</title>
	<para>I have to remember this</para>
	</memo>

	It is simple to delinate where SGML is and is not an appropriate technology option but it is less...
	XML
	XML

	Having mentioned

	3.5 HyTime
	3.5 HyTime
	HyTime�
	3.5.1 Hypermedia Concepts and Dimensions
	3.5.1 Hypermedia Concepts and Dimensions
	Some of the basic concepts of hypermedia are not new. There have been cross-references in books e...
	It is possible to draw a dimension diagram for hypermedia (see�
	<GRAPHIC>
	<GRAPHIC>
	Figure 5: Dimensions of Hypermedia

	3.5.2 HyTime Hyperdocuments
	3.5.2 HyTime Hyperdocuments
	Every HyTime
	A
	HyTime is a large standard, but, fortunately, highly modular. This means that one can implement v...

	3.5.3 HyTime Markup
	3.5.3 HyTime Markup
	Arguably the most simple HyTime link construct is the
	Example 8
	Example 8

	The
	The
	Example 8: HyTime clinks
	Example 8: HyTime clinks
	<!DOCTYPE hydoc PUBLIC “-//Heikki Toivonen//DTD My HyTime Doc//EN“ [
	...
	<!ATTLIST xref
	linkend IDREF #REQUIRED
	HyTime NAME #FIXED “clink“>
	...
	<!ATTLIST nameloc
	id ID #REQUIRED
	HyTime NAME #FIXED “nameloc“>
	...
	<!ATTLIST nmlist
	docorsub ENTITY #IMPLIED
	nametype (element|element) “element“
	HyTime NAME #FIXED “nmlist“>
	<!ENTITY otherdoc SYSTEM “otherdoc.sgm“ CDATA SGML>
]>
	<hydoc id=”id-1”>
	<title>My Hydoc</title>
	<para>Link to ID <xref linkend=”id-1”>“id-1”</xref>.</para>
	<para>Link to <xref linkend=”loc-1”>“otherdoc.sgm“</xref>.<para>
	<para>Link to <xref linkend=”loc2”>“id-251” in “otherdoc.sgm”
	</xref>.</para>
	<hylinks>
	<nameloc id=”loc-1”>
	<nmlist nametype=”entity”>otherdoc</nmlist>
	</nameloc>
	<nameloc id=”loc-2”>
	<nmlist docorsub=”otherdoc” nametype=”element”>id-251</nmlist>
	</nameloc>
	</hylinks>
	</hydoc>

	3.5.4 Architectural Forms
	3.5.4 Architectural Forms
	Another frequently used construct from the HyTime standard is the
	The architectural forms facility is a great help in document management and interchange. With van...
	Document Style Semantics and Specification Language (
	HyTime has gained the reputation of being a difficult and expensive technology. While it is true ...

	3.6 Related Standards
	3.6 Related Standards
	SGML is not the only standard for structured documents. Open Document Architecture (
	Virtual Reality Markup Language�(
	Most documents contain illustrations. Effectively managing images is at least as important as man...

	Databases
	Databases
	We can still remember the golden days before Heisenberg, who showed humans the walls enclosing ou...
	We can still remember the golden days before Heisenberg, who showed humans the walls enclosing ou...
	Frank
	Frank
	Frank
	Herbert

	Children of Dune

	Any collection of data can be considered to form some sort of a data repository or database. Nowa...
	4.1 Common Database Properties
	4.1 Common Database Properties
	Databases have been around for a long time, even computerized databases have been in existence fo...
	Databases are scalable. They are usable as small, single person databases. A listing of one’s per...
	The most important and useful property of databases is the ability to perform queries on the data...
	Typically databases are used in situations where the database structure does not change, but the ...
	The current mainstream database technology is divided into relational and object-oriented databas...
	Before going futher it should be noted that the term database used in this paper actually means t...

	4.2 Relational Database Model
	4.2 Relational Database Model
	The relational database model is based on mathematics. Besides making it elegant by design, it ha...
	The end of the section lists some references that will explain the relational model more deeply a...
	It should be noted that most “relational databases” on the market are in fact not fully relationa...
	4.2.1 Basic Building Blocks
	4.2.1 Basic Building Blocks
	In the relational model, data concerning a given entity is collected in a table. Take, for exampl...
	<GRAPHIC>
	<GRAPHIC>
	Figure 6: Relational Database Model

	In typical database implementations some of the columns in a table form a so called
	Relationships can be
	In diagrammatic models of databases relationships between tables are sometimes indicated by lines...
	Relational database can also be thought to consist of different levels, or components. On the low...
	Relational database systems have methods that try to ensure that the data in the database will al...

	4.2.2 Normalization
	4.2.2 Normalization
	It is possible to design a database badly. Bad design means that the database contains redundant ...
	A table is in
	The

	4.2.3 Queries And Beyond
	4.2.3 Queries And Beyond
	To get data out of multiple tables or restrict what comes out of a single table, a query is neede...
	Example 9: SQL
	Example 9: SQL
	SELECT Product.name FROM Company, Manufactures, Product WHERE Company.name = “AB Spik” AND Compan...

	In English, the above query says:
	This query operates on tables
	Saying it aloud is quite a mouthful, but it really is quite simple. Initially selecting the three...
	A nice tutorial on SQL is

	4.3 Other Database Models
	4.3 Other Database Models
	Relational databases are not the only databases on the market. Object-oriented databases are stea...
	4.3.1 Object Oriented Databases
	4.3.1 Object Oriented Databases
	Objects in an object-oriented (OO) database may have data attributes and other objects. In fact, ...
	Contrary to popular beliefs, there are excellent object-oriented databases available. OO database...
	<GRAPHIC>
	<GRAPHIC>
	Figure 7: Object Oriented Database

	OO databases also have the benefit that developers are not faced with “impedance mismatch”. Imped...
	One serious handicap with OO databases is that they are not based on such a rich mathematical fou...

	4.3.2 More Exotic Database Models
	4.3.2 More Exotic Database Models
	Relational and object oriented databases are certainly not the only database technologies out the...
	Hybrid databases were mentioned earlier. A hybrid database is a hybrid between relational and obj...
	Hierarchical database technology (see�
	A brief visualization of the differences between relational, hierarchical and network models can ...
	<GRAPHIC>
	<GRAPHIC>
	Figure 8: Hierarchical Database Model

	<GRAPHIC>
	<GRAPHIC>
	Figure 9: Network Database Model

	Managing Documents with Databases
	Managing Documents with Databases
	You will learn the integrated communication methods as you complete the next step in your mentat ...
	You will learn the integrated communication methods as you complete the next step in your mentat ...
	Frank
	Frank
	Frank
	Herbert

	Children of Dune

	There are several ways to manage documents with databases. The most straight-forward way is to st...
	5.1 Differences And Similarities Between Databases And Structured Documents
	5.1 Differences And Similarities Between Databases And Structured Documents
	Documents contain information. It is important to be able to effectively manage that information....
	5.1.1 Storing And Retrieving Complete SGML Documents — A Challenge to Databases
	5.1.1 Storing And Retrieving Complete SGML Documents — A Challenge to Databases
	It is possible to break an
	It is relatively easy to understand how
	Databases are very different from
	Although it would be possible to describe a database’s structure with a
	With relational databases, showing the contents of the database as SGML tables, possibly with lin...
	Also, because databases are often huge in size, building a static

	5.1.2 Extracting Parts of Documents from Databases
	5.1.2 Extracting Parts of Documents from Databases
	There are two basic syntactic approaches to indicate in an
	Another option is to attach a query to an element. The query should be executed in order to get t...
	The second method looks more appealing, especially with the Second Edition of HyTime. The simple ...
	Another way to classify the how the database structure can be mapped to document structure is thr...
	As it was pointed out earlier, blind mapping of the tables and columns of a relational database t...
	A generic way would be to define a row model so that each row in a query's result set would gener...
	Example 10: Markup Generated from Database
	Example 10: Markup Generated from Database
	<book> <author column="Author">Frank Herbert</author> <title column="Book Name">Dune</title> </bo...

	5.2 General Purpose Databases
	5.2 General Purpose Databases
	A general purpose database means here a database not designed specifically to store and manage do...
	General purpose databases cannot really do anything smart with a large document. They must simply...
	Another approach, if the database is not required or cannot save the whole document, is to save t...
	If an organization is already using a relational database to manage product data (but not product...
	<GRAPHIC>
	<GRAPHIC>
	Figure 10: Document
	Figure 10: Document

	5.3 Specialized Databases
	5.3 Specialized Databases
	Specialized database in this context means a database that is designed and implemented to store a...
	Normal document management systems do not know that documents could contain internal structure. T...
	Version management systems commonly used in the software industry are also a bit like document ma...
	The most interesting document databases are the ones that understand that documents can have stru...
	A structured document database need not have any limitations as to how fine-grained the logical o...
	Documents can be constructed from many different objects in the database, sharing some objects. A...
	Of course, structured document databases can also save metadata about documents such as who creat...
	<GRAPHIC>
	<GRAPHIC>
	Figure 11: SGML Database

	5.4 Writing Modular Documents
	5.4 Writing Modular Documents
	To get the best out of a document management system where multiple authors are editing the same d...
	Authors that have spent their whole career writing documents from start to finish by themselves a...
	A micro-document should both be usable independently and it should also be possible to combine se...
	Reality imposes some constraints on how document fragments are assembled together, of course, so ...
	Practicality has something to say as well. A document must naturally be readable. If an optimal s...
	Structural documents are the natural way to write modular documents. When an organization decides...

	5.5 Addressing External Resources
	5.5 Addressing External Resources
	Managing blocks of documentation in
	Most technical documents include cross-references.
	The problems with link management warrants a thesis of its own. And the sad answer is that there ...
	It turns out the easiest problem to solve is linking to content that does not yet exist. This can...
	<GRAPHIC>
	<GRAPHIC>
	Figure 12: Authoring with an Intermediate Link Document

	The next problem is more difficult. If an automated document assembly process drops cross-referen...
	The most difficult problem is making sure that links point to where they are supposed to point. L...
	Problems and solutions in linking have been explored in

	5.6 Client-Server Architecture
	5.6 Client-Server Architecture
	In a document management system, as described in this paper, there is a database and possibly som...
	The client-server architecture model is very common way to design system architectures. It is a d...
	The architecture consists of three major components: server, client and network. The network comp...
	The processing of information can occur centrally at the server, or the work can be divided betwe...
	<GRAPHIC>
	<GRAPHIC>
	Figure 13: Client-Server Architecture for Document Management System

	5.7 Background Summary
	5.7 Background Summary
	This and the previous chapters have built the background knowledge needed to understand the pract...
	The following chapters introduce a real life product document management system using relational ...

	Product Information Management Project at Wärtsilä NSD Power Plants
	Product Information Management Project at Wärtsilä NSD Power Plants
	The Duncans sometimes ask if I understand the exotic ideas of our past? And if I understand them,...
	The Duncans sometimes ask if I understand the exotic ideas of our past? And if I understand them,...
	Frank
	Frank
	Frank
	Herbert

	God Emperor of Dune

	Wärtsilä NSD (former Wärtsilä Diesel) is a Finnish engineering group with global operations. It i...
	Wärtsilä NSD Power Plants has about 300 active subcontractors, and has had over 8,000 different s...
	This chapter describes the overall PIM project and the project phases. The next two chapters desc...
	6.1 Analysis Pointed to SGML And Relational Databases
	6.1 Analysis Pointed to SGML And Relational Databases
	It was determined that the different file format problems could be solved with
	Wärtsilä was using Oracle relational databases internally, as were many of its larger subcontract...
	Content production was the next challenge, because most subcontractors were not using SGML intern...
	The final piece was the viewing and publishing tools. There were no good and cheap SGML viewers, ...

	6.2 Requirements And Specification
	6.2 Requirements And Specification
	The PIM system requirements were loosely defined. Because the basic problem was that documents co...
	Documentation is created at the same time as the new equipment it documents is manufactured. Occa...
	When Wärtsilä delivers a power plant, dozens — maybe hundreds of thick binder manuals are shipped...
	SGML is a neutral data format in that it does not specify how it should be formatted, or even on ...
	Software specifications were written first for the editor and database parts of the system, as we...
	The natural development process for this project turned out to be evolutionary development. It wa...

	6.3 Design and Architectrure
	6.3 Design and Architectrure
	The analysis phase had identified the key components in the PIM system. Thus the design process f...
	6.3.1 Architectural Design
	6.3.1 Architectural Design
	The client-server model architecture was the natural choice. There is a server that hosts the rel...
	The overall system architecture can be seen in
	There was never any question as to the database technology to use. Wärtsilä had all the product d...
	The subcontractors were to
	<GRAPHIC>
	<GRAPHIC>
	Figure 14: Simplified PIM System Architecture

	<GRAPHIC>
	<GRAPHIC>
	Figure 15: System Architecture

	6.3.2 DTD Design
	6.3.2 DTD Design
	System-level data structure design involved designing SGML DTDs and the database schema. Citec
	The eight DTDs that were designed are: system, function, operation, corrective maintenance, perio...
	<GRAPHIC>
	<GRAPHIC>
	Figure 16: Spare Parts DTD�

	If and when these DTDs get revised, it will be a lot easier to migrate the old data to conform to...

	6.3.3 Database Design
	6.3.3 Database Design
	A logistics support database (
	The final LSAR database schema is shown in
	The
	The
	There are many components in a power plant that need maintenance after a certain amount of time. ...
	The LSAR database is at least in the third normal form. It has not been checked to see if it woul...
	<GRAPHIC>
	<GRAPHIC>
	Figure 17: Power Plant Equipment Breakdown Structure

	<GRAPHIC>
	<GRAPHIC>
	Figure 18: LSAR Schema

	6.4 Verification and Validation
	6.4 Verification and Validation
	No metrics were designed to measure the success or failure of the delivered system. Because of th...
	Although the tools more or less did what they were supposed to do, the overall project failed at ...
	In retrospect it is quite easy to see what should have been done differently. The whole project a...
	After evaluation of the Microsoft Word-based editor the vision should have been re-evaluated. The...
	It was also learned that the subcontractors were not ready to move into SGML. The jump to structu...
	Wärtsilä and Citec have evaluated the system using information prepared for the Wärtsilä Pilot Po...

	Document Authoring
	Document Authoring
	AXIS (Biologic Band 4)> Hello, Roger. I assume you’re still there. This distance is a challenge e...
	AXIS (Biologic Band 4)> Hello, Roger. I assume you’re still there. This distance is a challenge e...
	Greg
	Greg
	Greg
	Bear

	Queen of Angels

	There are several good SGML editors on the market, for example
	7.1 Authoring Tool
	7.1 Authoring Tool
	The WNS Author Tool created by Citec is used to
	The authoring tool works with Microsoft Word 6. SGML Author for Word 1.0 is also needed, along wi...
	A new document is created by selecting
	Changing the context in the
	Information modules are written, more or less, as normal documents with Word. The SGML structure ...
	<GRAPHIC>
	<GRAPHIC>
	<GRAPHIC>

	Figure 19: The LSAR Interface

	<GRAPHIC>
	<GRAPHIC>
	<GRAPHIC>

	Figure 20: Selecting Context from the Equipment Breakdown Structure

	<GRAPHIC>
	<GRAPHIC>
	<GRAPHIC>

	Figure 21: System Field Drop Down Menu

	<GRAPHIC>
	<GRAPHIC>
	<GRAPHIC>

	Figure 22: Sample Information Module in WNS Author Tool

	7.2 Implementation of the WNS Authoring Tool
	7.2 Implementation of the WNS Authoring Tool
	The first implementation work in the PIM project begun with the development of the authoring tool...
	The WNS Authoring Tool was implemented in Microsoft Word Basic. This presented some serious diffi...
	The authoring tool and the LSAR database were tested by Citec and Wärtsilä by trying to create do...
	The biggest problem with the Authoring Tool is that it is limited to a specific version of Micros...
	As soon as this was realized plans for improvement were prepared. In these plans the parts that o...
	An additional problem with the SGML Author for Word was licensing. It was not clear who owned the...
	Citec’s experience with other customized SGML editors suggest that it would not be a big risk to ...

	Document Assembly
	Document Assembly
	Inaccuracy. We did not destroy those portions of your organic brain. We borrowed/took/expropriate...
	Inaccuracy. We did not destroy those portions of your organic brain. We borrowed/took/expropriate...
	David
	David
	David
	Brin

	Heaven’s Reach

	The practical work in this thesis was concentrated into the area of document assembly. See
	The work included expanding the functionality of the Multidoc Pro (
	Additionally, Multidoc Pro was enhanced so that it could view relational databases as if they were
	8.1 Multidoc Pro SGML Tools
	8.1 Multidoc Pro SGML Tools
	Multidoc Pro
	The current tools in the Multidoc Pro product family are: Browser, Publisher, Database Browser, D...
	Multidoc Pro did not grow out of nothing. Its predecessor was Multidoc LT, created for Wärtsilä D...
	Some properties are common in all Multidoc Pro products. When an SGML document is opened in Multi...
	Multidoc Pro formats the
	A document can also have multiple
	<GRAPHIC>
	<GRAPHIC>
	<GRAPHIC>

	Figure 23: Multidoc Pro Screenshot

	One common use for the web files is document update. For example, if a company issues four CDs a ...
	A construct that is not available in other ViewPort-based products is the document set. A documen...
	Multidoc Pro supports a wide range of graphics formats, starting from commonplace
	<GRAPHIC>
	<GRAPHIC>
	Figure 24: Document Set

	Although Multidoc Pro does not offer full
	The Multidoc Pro programs are available for free evaluation period of 21 days from the Citec Web ...

	8.2 Multidoc Pro Database Browser and Publisher
	8.2 Multidoc Pro Database Browser and Publisher
	The database extensions to Multidoc Pro Browser and Publisher makes it possible to browse relatio...
	8.2.1 Database Mapping
	8.2.1 Database Mapping
	A database mapping starts by selecting
	A Data Source Name (
	The hardcoded database
	Figure 25
	Figure 25

	<GRAPHIC>
	<GRAPHIC>
	Figure 25: The Tree View of the Database DTD�

	A mapping can be saved. The save file is in
	The Multidoc Pro dialog where the mapping is specified is shown in�
	<GRAPHIC>
	<GRAPHIC>
	Figure 26: Database Mapping Dialog

	<GRAPHIC>
	<GRAPHIC>
	Figure 27: Database Mapping Context Menu

	<GRAPHIC>
	<GRAPHIC>
	Figure 28: Map Tables Dialog

	The
	<GRAPHIC>
	<GRAPHIC>
	Figure 29: Map Queries Dialog

	<GRAPHIC>
	<GRAPHIC>
	Figure 30: Map Columns Dialog

	<GRAPHIC>
	<GRAPHIC>
	Figure 31: Map Relationships Dialog

	8.2.2 Document Generation
	8.2.2 Document Generation
	An actual
	<GRAPHIC>
	<GRAPHIC>
	Figure 32: Sample Database Schema

	<GRAPHIC>
	<GRAPHIC>
	<GRAPHIC>

	Figure 33: Sample LSAR Generated Document

	8.2.3 Publishing
	8.2.3 Publishing
	Publishing is done with the Document Set Editor. It is possible to create the whole publication i...
	Multidoc Pro Database Browser and Publisher have a query dialog. It has a simple SQL generator, b...
	After changes are made in the editor, the document can be saved. The editor offers two choices: d...

	8.3 Multidoc Pro Implementation Details
	8.3 Multidoc Pro Implementation Details
	The specifications for the publishing tool were written when the standard Multidoc Pro program wa...
	The programming language used to develop Multidoc Pro was C++, or, to be exact, Microsoft Visual ...
	Programming methodology followed mostly�
	Typically an MFC (the Microsoft Foundation Class class library that ships with Visual C++) applic...
	Initially there was only one developer for MDP (acronym for Multidoc Pro) and, at the peak of the...
	A version control system was acquired relatively late in the process. Before automated version co...
	The whole application was not created from scratch. The Synex ViewPort engine was the core around...
	8.3.1 Synex ViewPort Engine
	8.3.1 Synex ViewPort Engine
	Synex ViewPort is an SGML engine. It has a fast, non-validating
	This section is based mostly on�
	Figure 34
	Figure 34

	Figure 35
	Figure 35

	The figure shows how data flows through the various ViewPort components before ending up on the s...
	The figure clearly illustrates ViewPort processing and the meaning of various terms used here. It...
	ViewPort is at its best in a browser application. Limited support for
	<GRAPHIC>
	<GRAPHIC>
	Figure 34: Data Processing in a ViewPort System

	<GRAPHIC>
	<GRAPHIC>
	Figure 35: ViewPort System Components

	8.3.2 Other Third-Party Modules
	8.3.2 Other Third-Party Modules
	Several smaller software packages were used in the Multidoc Pro products in addition to the Synex...
	The first problem area that was fixed with an additional module was a performance problem with th...
	Another performance boost came from SmartHeap which replaced the default heap memory handling pro...
	Dialogs in the
	The commercial package Objective Toolkit�
	The database extensions in Multidoc Pro were programmed with the help of Visual SQL from Blue Sky...
	Multidoc Pro can be downloaded from the web for free evaluation. The evaluation period is 21 days...
	Other small ideas, fixes and improvements too numerous to mention were found from the various MFC...

	8.3.3 Database Support via Open DataBase Connectivity
	8.3.3 Database Support via Open DataBase Connectivity
	The Multidoc Pro Database Browser and Database Publisher were developed for Citec Software Ltd. a...
	The database connections in the authoring tool and the Multidoc Pro Database Browser and Publishe...
	The class diagram for the
	<GRAPHIC>
	<GRAPHIC>
	Figure 36: ODBC Recordset Classes

	Because the default
	Multidoc Pro generates SQL queries based on user instructions. This generated SQL forms a very sm...
	<TABLE>
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	<query>
	SELECT DISTINCT <column list> FROM <table list> [WHERE <condition> [<connective> <condition>]*]

	<TABLE ROW>
	<table list>
	<table name>[, <table name>]*

	<TABLE ROW>
	<column list>
	COUNT(*) | <table name>.<column name> [,<table name>.<column name>]*

	<TABLE ROW>
	<condition>
	<table name>.<column name> <compare> <table name>.<column name> | <field value> | '<field value>'

	<TABLE ROW>
	<table name>
	table name | [table name]

	<TABLE ROW>
	<column name>
	column name | [column name]

	<TABLE ROW>
	<compare>
	= | < | > | <= | >= | <>

	<TABLE ROW>
	<connective>
	AND | OR

	<TABLE ROW>
	<field value>
	contents of a database field (a row from some column)

	Table 1: Multidoc Pro Generated SQL Grammar

	8.3.4 Main Functionality Classes
	8.3.4 Main Functionality Classes
	The majority of the database-specific code is in the class
	The code uses beneficial design patterns as well. For example, the
	The
	Figure 37
	Figure 37

	<GRAPHIC>
	<GRAPHIC>
	Figure 37: Main Database Extensions Classes

	8.3.5 Code Metrics
	8.3.5 Code Metrics
	Table�2
	Table�2

	<TABLE>
	<TABLE>
	<TABLE HEADING>
	<TABLE ROW>
	Full Multidoc Pro
	Of Which Database Extensions

	<TABLE BODY>
	<TABLE ROW>
	File Count
	File Count

	252
	77

	<TABLE ROW>
	Text Lines
	Text Lines

	92736
	17862

	<TABLE ROW>
	Semicolons
	Semicolons

	34076
	7313

	<TABLE ROW>
	Comments
	Comments

	12249
	1835

	<TABLE ROW>
	%Semicolons
	%Semicolons

	36
	40

	<TABLE ROW>
	%Comments
	%Comments

	13
	10

	<TABLE ROW>
	Classes
	Classes

	190
	40

	<TABLE ROW>
	Data Members
	Data Members

	1553
	337

	<TABLE ROW>
	Member Functions
	Member Functions

	2625
	552

	Table 2: Multidoc Pro Code Metrics

	8.3.6 Testing
	8.3.6 Testing
	Testing of Multidoc Pro was difficult at times due to the integration of the various third party ...
	Numega BoundsChecker
	The database was another great source of grief, at least in the beginning. When SQL queries were ...
	In addition to the testing performed at development time, Multidoc Pro Database Publisher and Bro...

	8.4 In Retrospect
	8.4 In Retrospect
	Multidoc Pro Database Browser and Publisher have showed a way to view relational databases as
	The implemented system accomplished what it was supposed to do: assemble large documents from doc...
	The implementation of Multidoc Pro Database Browser and Publisher taught us some lessons. It was ...
	The save file format should have been
	There were two major problems in the project. Probably the bigger one was that it was not always ...
	It is not too difficult to see what changes would be beneficial for the Multidoc Pro Database Bro...
	The other Multidoc Pro products have received good reviews. The product family has grown to inclu...
	Although the
	In March 1998 Netscape released the source to its web browser. Citec saw this as a great opportun...

	Summary
	Summary
	Only fools prefer the past.
	Only fools prefer the past.
	Frank
	Frank
	Frank
	Herbert

	Using relational databases to manage product documentation is not a new concept. There are techni...
	The weakness of this model is that it is very easy to break the reference from the database to th...
	More work is required with the tools that interact with the product information database. There m...
	The most difficult challenge, however, is managing people. After all is said and done, it is of n...
	Even though the project with Wärtsilä did not go as was planned, the implementation of the system...

	References
	References
	Angerstein
	Angerstein
	Angerstein
	Angerstein
	Angerstein
	Paula

	Why Your Document Management System Should Care About Hyperlinks
	Texcel Research, Inc.
	Texcel Research, Inc.

	1997

	ArborText, Inc.
	ArborText, Inc.
	ArborText, Inc.
	ArborText, Inc.

	Getting Started with SGML
	A Guide to the Standard Generalized Markup Language and Its Role in Information Management
	1995

	Balasubramanian
	Balasubramanian
	Balasubramanian
	Balasubramanian
	Balasubramanian
	V.

	Bashian
	Bashian
	Alf

	Porcher
	Porcher
	Daniel

	A Large-Scale Hypermedia Application Using Document Management And Web Technologies
	in “HYPERTEXT ‘97“, Proceedings of the Eight ACM Concerence on Hypertext
	pages 134-145
	pages 134-145

	1997

	Booch
	Booch
	Booch
	Booch
	Booch
	Grady

	Jacobson
	Jacobson
	Ivar

	Rumbaugh
	Rumbaugh
	James

	The Unified Modeling Language User Guide
	Addison-Wesley Publishing Company
	Addison-Wesley Publishing Company

	1998

	Bourret
	Bourret
	Bourret
	Bourret
	Bourret
	Ronald

	XML and Databases
	Technical University of Darmstadt
	Technical University of Darmstadt

	1999

	Brown
	Brown
	Brown
	Brown
	Brown
	William
	J.

	Malveau
	Malveau
	Raphael
	C.

	Brown
	Brown
	William
	H.

	McCormick
	McCormick
	III
	Hays
	W.

	Antipatterns
	Refactoring Software, Architecture and Projects in Crisis
	John Wiley & Sons
	John Wiley & Sons

	1998

	Bush
	Bush
	Bush
	Bush
	Bush
	Vannevar

	As We May Think
	The Atlantic Monthly
	July (1945)
	pages 641- 649

	Böhm
	Böhm
	Böhm
	Böhm
	Böhm
	Klemens

	Aberer
	Aberer
	Karl

	Storing HyTime Documents In an Object-Oriented Database
	in: “CIKM ‘94“, Proceedings of the Third International Conference on Information and Knowledge Ma...
	pages 26-33
	pages 26-33

	1994

	CIMdata
	CIMdata
	CIMdata
	CIMdata

	Product Data Management: The Definition
	An introduction to Concepts, Benefits, and Terminology
	1988

	CITEC Engineering Oy
	CITEC Engineering Oy
	CITEC Engineering Oy
	CITEC Engineering Oy

	Multidoc Pro Database Browser and Database Publisher — User’s Manual
	1997

	CITEC Engineering Oy
	CITEC Engineering Oy
	CITEC Engineering Oy
	CITEC Engineering Oy

	WNS Author Tool for the Base-DTD User Manual
	1997

	CITEC Engineering Oy
	CITEC Engineering Oy
	CITEC Engineering Oy
	CITEC Engineering Oy

	Multidoc Pro Browser/Publisher Product Brief
	1998

	DeRose
	DeRose
	DeRose
	DeRose
	DeRose
	Steven
	J.

	Durand
	Durand
	David
	G.

	Making Hypermedia Work
	A User’s Guide to HyTime
	Kluwer Academic Publishers
	Kluwer Academic Publishers

	1994

	Eckel
	Eckel
	Eckel
	Eckel
	Eckel
	Bruce

	Thinking in C++
	Prentice Hall, Inc.
	Prentice Hall, Inc.

	1995

	Elovainio
	Elovainio
	Elovainio
	Elovainio
	Elovainio
	Kimmo

	SGML-Based Documentation Process
	VTT OFFSETPAINO
	VTT OFFSETPAINO

	1995

	FMV
	FMV
	FMV
	FMV

	Description of FMV Grund-DTD
	1995

	Gamma
	Gamma
	Gamma
	Gamma
	Gamma
	Erich

	Helm
	Helm
	Richard

	Johnson
	Johnson
	Ralph

	Vlissides
	Vlissides
	John

	Design Patterns
	Elements of Reusable Object-Oriented Software
	Addison–Wesley
	Addison–Wesley

	1994

	Goldfarb
	Goldfarb
	Goldfarb
	Goldfarb
	Goldfarb
	Charles
	F.

	The SGML Handbook
	Oxford University Press Inc.
	Oxford University Press Inc.

	1990

	Hoffman
	Hoffman
	Hoffman
	Hoffman
	Hoffman
	James

	Introduction to Structured Query Language
	1999

	ISO 8879:1986
	ISO 8879:1986
	ISO 8879:1986
	ISO 8879:1986

	Information Processing — Text and Office Systems — Standard Generalized Markup Language (SGML)
	1986

	ISO 8613
	ISO 8613
	ISO 8613
	ISO 8613

	Information Technology — Text and Office Systems — Office Document Architecture (ODA)
	1989

	ISO/IEC 9075:1992
	ISO/IEC 9075:1992
	ISO/IEC 9075:1992
	ISO/IEC 9075:1992

	Information Technology — Database Languages — SQL
	1992

	ISO/IEC 8632:1992
	ISO/IEC 8632:1992
	ISO/IEC 8632:1992
	ISO/IEC 8632:1992

	Information Processing Systems — Computer Graphics Metafile for the Storage and Transfer of Pictu...
	1992

	ISO/IEC 10646-1:1993
	ISO/IEC 10646-1:1993
	ISO/IEC 10646-1:1993
	ISO/IEC 10646-1:1993

	Information technology — Universal Multiple-Octet Coded Character Set (UCS) — Part 1: Architectur...
	1993

	ISO 10303
	ISO 10303
	ISO 10303
	ISO 10303

	Industrial Automation Systems and Integration — Product Data Representation and Exchange (STEP)
	1994-1998

	ISO/IEC 10179:1996
	ISO/IEC 10179:1996
	ISO/IEC 10179:1996
	ISO/IEC 10179:1996

	Information Technology — Text and Office Systems — Document Style Semantics and Specification Lan...
	1996

	ISO/IEC 10744:1997
	ISO/IEC 10744:1997
	ISO/IEC 10744:1997
	ISO/IEC 10744:1997

	Information Technology — Hypermedia/Time-based Structuring Language (HyTime)
	1997

	ISO/IEC 14772-1:1998
	ISO/IEC 14772-1:1998
	ISO/IEC 14772-1:1998
	ISO/IEC 14772-1:1998

	Information technology — Computer graphics and image processing — The Virtual Reality Modeling La...
	1998

	ISO/IEC 16262:1998
	ISO/IEC 16262:1998
	ISO/IEC 16262:1998
	ISO/IEC 16262:1998

	Information Technology — ECMAScript Language Specification
	1998

	Kimber
	Kimber
	Kimber
	Kimber
	Kimber
	W.
	Eliot

	A Tutorial Introduction to SGML Architectures
	ISOGEN International Corp.
	ISOGEN International Corp.

	1997

	Kimber
	Kimber
	Kimber
	Kimber
	Kimber
	W.
	Eliot

	Practical Hypermedia
	An Introduction to HyTime
	Prentice Hall
	Prentice Hall

	1998

	Klavans
	Klavans
	Klavans
	Klavans
	Klavans
	Judith

	Data Bases in Digital Libraries
	Where Computer Science and Information Management Meet
	in “PODS ‘98“, proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of...
	pages 224-226
	pages 224-226

	1998

	Lamport
	Lamport
	Lamport
	Lamport
	Lamport
	Leslie

	LaTeX: A Document Preparation System
	Addison-Wesley Publishing Company, Inc
	Addison-Wesley Publishing Company, Inc

	1994

	Lindén
	Lindén
	Lindén
	Lindén
	Lindén
	Greger

	Structured Document Transformations
	PhD Thesis, Series of Publications A
	University of Helsinki
	University of Helsinki

	Report A-1997-2 (1997)

	Loizou
	Loizou
	Loizou
	Loizou
	Loizou
	George

	Levene
	Levene
	Mark

	A Guided Tour of Relational Databases and Beyond
	Springer Verlag
	Springer Verlag

	1999

	Loomis
	Loomis
	Loomis
	Loomis
	Loomis
	Mary

	Chaudri
	Chaudri
	Akmal
	B.

	Object Databases in Practice
	Prentice-Hall, Inc
	Prentice-Hall, Inc

	1998

	Maler
	Maler
	Maler
	Maler
	Maler
	Eve

	Andaloussi
	Andaloussi
	Jeanne
	El

	Developing SGML DTDs
	From Text to Model to Markup
	Prentice Hall
	Prentice Hall

	1995

	Metsäranta
	Metsäranta
	Metsäranta
	Metsäranta
	Metsäranta
	Pekka

	“Rakenteisen tiedon säilyttäminen
	XML-dokumentti OAIS- viitemallissa (in Finnish)”
	Master of Science Thesis, Jyväskylä University
	1999

	Meyers
	Meyers
	Meyers
	Meyers
	Meyers
	Scott

	Effective C++
	50 Ways to Improve Your Programs and Designs
	Addison-Wesley Publishing Company
	Addison-Wesley Publishing Company

	1997

	Microsoft Corporation
	Microsoft Corporation
	Microsoft Corporation
	Microsoft Corporation

	ODBC Application Programmer’s Guide
	Microsoft
	Microsoft

	1992

	MicroQuill
	MicroQuill
	MicroQuill
	MicroQuill

	SmartHeap
	1999

	Myaeng
	Myaeng
	Myaeng
	Myaeng
	Myaeng
	Sung
	Hyon

	Jang
	Jang
	Don-Hyun

	Kim
	Kim
	Mun-Seok

	Zhoo
	Zhoo
	Zong-Cheol

	A Flexible Model for Retrieval of SGML Documents
	in “SIGIR ‘98“, Proceedings of the 21st Annual International ACM SIGIR Conference on Research and...
	pages 138-145
	pages 138-145

	1998

	NanoSoft Corporation
	NanoSoft Corporation
	NanoSoft Corporation
	NanoSoft Corporation

	NSViews Version 1.04
	1997

	Nelson
	Nelson
	Nelson
	Nelson
	Nelson
	Theodore
	Holm

	Literary Machines
	Mindful Press
	Mindful Press

	1982

	Nelson
	Nelson
	Nelson
	Nelson
	Nelson
	Theodore
	Holm

	Embedded Markup Considered Harmful
	1997

	Newcomb
	Newcomb
	Newcomb
	Newcomb
	Newcomb
	Steven
	R.

	Kipp
	Kipp
	Neill
	A.

	Newcomb
	Newcomb
	Victoria
	T.

	“HyTime”
	The Hypermedia/Time-based Document Structuring Language
	Communications of the ACM
	Vol. 43, No. II (1991)

	OASIS
	OASIS
	OASIS
	OASIS

	The DocBook DTD
	1999

	Onnela
	Onnela
	Onnela
	Onnela
	Onnela
	Tapio

	Bittiarkisto voi jäädä lukematta (in Finnish)
	Tiede 2000
	5 (1999)
	p. 37

	Paquet
	Paquet
	Paquet
	Paquet
	Paquet
	Gaël

	Hyper9002: An Online Operating Manual for a Chemical Manufacturer Using Hypertext Integrated with...
	in: “SAC ‘92”, Proceedings of the 1992 ACM/SIGAPP Symposium on Applied Computing (vol.�II): Techn...
	pages 976-984
	pages 976-984

	1992

	The PDM Information Center, courtesy of Hewlett-Packard
	The PDM Information Center, courtesy of Hewlett-Packard
	The PDM Information Center, courtesy of Hewlett-Packard
	The PDM Information Center, courtesy of Hewlett-Packard

	Understanding Product Data Management
	1997

	The PDM Information Center
	The PDM Information Center
	The PDM Information Center
	The PDM Information Center

	How the technology Has Evolved
	A Short Review
	1997

	Peltonen
	Peltonen
	Peltonen
	Peltonen
	Peltonen
	Björn

	Mäki
	Mäki
	Erik

	Case Study: Wärtsilä Diesel Oy, Power Plants
	1997

	Peltonen
	Peltonen
	Peltonen
	Peltonen
	Peltonen
	Björn

	“Case Study”, The SGML (
	Do More with Less and Do It Better
	in: “SGML Finland 1997 — seminaarijulkaisu”, Proceedings of Finnish SGML Conference
	SGML User’s Group Finland
	SGML User’s Group Finland

	pages 4-9
	pages 4-9

	1997

	Prescod
	Prescod
	Prescod
	Prescod
	Prescod
	Paul

	Formalizing SGML and XML Instances and Schemata with Forest Automata Theory
	1998

	Prosise
	Prosise
	Prosise
	Prosise
	Prosise
	Jeff

	Programming Windows 95 with MFC
	Create Programs for Windows Quickly with the Microsoft Foundation Class Library
	Microsoft Press
	Microsoft Press

	1996

	Reinwald
	Reinwald
	Reinwald
	Reinwald
	Reinwald
	Berthold

	Pirahesh
	Pirahesh
	Hamid

	SQL Open Heterogenous Data Access
	in “SIGMOD ‘98”, Proceedings of ACM SIGMOD International Conference on Management of Data
	pages 506-507
	pages 506-507

	ACM
	ACM

	1998

	RogueWave Software
	RogueWave Software
	RogueWave Software
	RogueWave Software

	Objective Toolkit
	1999

	Rytkönen
	Rytkönen
	Rytkönen
	Rytkönen
	Rytkönen
	Kimmo

	Kunz
	Kunz
	Jürgen

	DOCSTEP — Technical Documentation Creation and Management using STEP
	in: “SGML Finland 1997 — seminaarijulkaisu”, Proceedings of Finnish SGML Conference
	SGML Finland User’s Group
	SGML Finland User’s Group

	pages 39- 68
	pages 39- 68

	1997

	Sipser
	Sipser
	Sipser
	Sipser
	Sipser
	Michael

	Introduction to the Theory of Computation
	International Thomson Publishing
	International Thomson Publishing

	1996

	Softel vdm Inc.
	Softel vdm Inc.
	Softel vdm Inc.
	Softel vdm Inc.

	SftTree/DLL 4.0 Product Information
	1999

	Sommerville
	Sommerville
	Sommerville
	Sommerville
	Sommerville
	Ian

	Software Engineering
	Addison–Wesley Publishers Ltd.
	Addison–Wesley Publishers Ltd.

	1996

	Sundgren
	Sundgren
	Sundgren
	Sundgren
	Sundgren
	Bo

	Databaser och datamodeller (in Swedish)
	Studentlitteratur
	Studentlitteratur

	1981

	Synex Information AB
	Synex Information AB
	Synex Information AB
	Synex Information AB

	Synex ViewPort Version 2.1 Programmer’s Manual
	1998

	Travis
	Travis
	Travis
	Travis
	Travis
	Brian

	Waldt
	Waldt
	Dale

	The SGML Implementation Guide
	A Blueprint for SGML Migration
	Springer-Verlag
	Springer-Verlag

	1995

	Turner
	Turner
	Turner
	Turner
	Turner
	Ronald
	C.

	Douglass
	Douglass
	Timothy
	A.

	Turner
	Turner
	Audrey
	J.

	README.1ST
	SGML For Writers and Editors
	Prentice-Hall, Inc
	Prentice-Hall, Inc

	1996

	Vanvliet
	Vanvliet
	Vanvliet
	Vanvliet
	Vanvliet
	Peter
	A.

	CodeCount
	1998

	Vlissides
	Vlissides
	Vlissides
	Vlissides
	Vlissides
	John

	Pattern Hatching
	Design Patterns Applied
	Addison-Wesley Publishing Company
	Addison-Wesley Publishing Company

	1998

	World Wide Web Consortium
	World Wide Web Consortium
	World Wide Web Consortium
	World Wide Web Consortium

	Cascading Style Sheets (CSS)
	1996

	World Wide Web Consortium
	World Wide Web Consortium
	World Wide Web Consortium
	World Wide Web Consortium

	Extensible Markup Language (XML) 1.0
	1998

	World Wide Web Consortium
	World Wide Web Consortium
	World Wide Web Consortium
	World Wide Web Consortium

	Namespaces in XML
	1999

	World Wide Web Consortium
	World Wide Web Consortium
	World Wide Web Consortium
	World Wide Web Consortium

	Extensible Stylesheet Language (XSL) Specification
	W3C Working Draft 21 April 1999
	1999

	Wakizono
	Wakizono
	Wakizono
	Wakizono
	Wakizono
	Ryuji

	Kawamura
	Kawamura
	Toshikazu

	Tsuchiya
	Tsuchiya
	Takehiko

	Hatanaka
	Hatanaka
	Takahiro

	Tanaka
	Tanaka
	Tatsuji

	Object-Oriented Database Management System for Process Control Systems -Development and Evaluation-
	in “SAC ‘99”, Proceedings of the 1999 ACM Symposium on Applied Computing
	pages 204-209
	pages 204-209

	ACM
	ACM

	1999

	Whitehorn
	Whitehorn
	Whitehorn
	Whitehorn
	Whitehorn
	Mark

	Marklyn
	Marklyn
	Bill

	Inside Relational Databases
	With Examples in Access
	Springer-Verlag
	Springer-Verlag

	1999

	Yarger
	Yarger
	Yarger
	Yarger
	Yarger
	Randy
	Jay

	Reese
	Reese
	George

	King
	King
	Tim

	MySQL & mSQL
	O’Reilly & Associates, Inc.
	O’Reilly & Associates, Inc.

	1999

	Database DTD
	Database DTD
	This appendix presents the predefined, hardcoded database DTD used by Multidoc Pro Database Brows...
	<!--**-- - -* *-- --* Database DT...
	<!--**-- - -* *-- --* Database DT...

	Database DTD 2
	Database DTD 2
	This appendix shows an attempt to fix some of the shortcomings of the first version of the database
	The document language specified in this
	This
	<!--***-- --* *-- --* Database DTD ...
	<!--***-- --* *-- --* Database DTD ...

	Sample Database Mapping
	Sample Database Mapping
	This appendix shows the beginning of a sample database mapping file. The plan was that this forma...
	The DSN row in the beginning identifies the ODBC data source name which this mapping connects to....
	DSN=LSAR SAMPLE KEY=DATABASE:1 MAP=LSAR SAMPLE;0;0;LSAR SAMPLE;0;0()() REL= KEY=DATABASE:1,LEVEL:...

